Wykład 2 4.1 Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.

Slides:



Advertisements
Podobne prezentacje
Wykład Rozwinięcie potencjału znanego rozkładu ładunków
Advertisements

Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Pole elektryczne i potencjał pochodzące od jednorodnie naładowanej nieprzewodzącej kuli W celu wyznaczenia natężenia posłużymy się prawem.
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
6.1 Energia potencjalna jednorodnie naładowanej kuli – jądro atomowe
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 21 Mechanika płynów 9.1 Prawo Archimedesa
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład Magnetyczne własności materii
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
Elekrostatyka Podstawowe pojęcia i prawa: ładunek, siła, natężenie pola, energia potencjalna, potencjał, prawo Coulomba, prawo Gaussa.
FIZYKA dla studentów POLIGRAFII Elektrostatyka
Elektrostatyka w przykładach
Wykład III ELEKTROMAGNETYZM
ELEKTROSTATYKA I.
Wykład II.
Wykład VIIIa ELEKTROMAGNETYZM
Wykład IV Pole magnetyczne.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Reinhard Kulessa1 Wykład Energia pola indukcji magnetycznej 18 Prądu zmienne 18.1 Impedancja obwodów prądu zmiennego 16.5 Zjawisko samoindukcji 18.2.
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.
1 Elektryczność i Magnetyzm Reinhard Kulessa II semestr r. akademickiego 2006/2007 Literatura E.M. Purcell, Berkeley Physics Course, Elektryczność i Magnetyzm.
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład 25 Fale płaskie c.d. Trójwymiarowe równanie różniczkowe fali
Wykład Materia w polu elektrycznym cd. pol
Wykład Podstawowe informacje doświadczalne cd.
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Zjawisko indukcji elektromagnetycznej
Wykład Spin i orbitalny moment pędu
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład 2 4. Ładunki elektryczne
Elektrostatyka (I) wykład 16
FIZYKA dla studentów POLIGRAFII Elektrostatyka. Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest 1 kulomb.
WSTĘP Zmiany (drgania) natężeń pól elektrycznego i magnetycznego rozchodzą się w przestrzeni (w próżni lub w ośrodkach materialnych) w postaci fal elektromagnetycznych.
Wykład 23 Ruch drgający 10.1 Oscylator harmoniczny
MECHANIKA NIEBA WYKŁAD r.
Wykład 6 Elektrostatyka
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Pole elektryczne. Prawo Coulomba. Przenikalność elektryczna środowisk.
Prawo Coulomba Autor: Dawid Soprych.
Elektrostatyka.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Elektrostatyka.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
Temat: Natężenie pola elektrostatycznego
Niech f(x,y,z) będzie ciągłą, różniczkowalną funkcją współrzędnych. Wektor zdefiniowany jako nazywamy gradientem funkcji f. Wektor charakteryzuje zmienność.
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Trochę matematyki - dywergencja Dane jest pole wektora. Otoczymy dowolny punkt P zamkniętą powierzchnią A. P w objętości otoczonej powierzchnią A pole.
Trochę matematyki Przepływ cieczy nieściśliwej – zamrozimy ciecz w całej objętości z wyjątkiem wąskiego kanalika o stałym przekroju – kontur . Ciecz w.
Wykład Zjawisko indukcji elektromagnetycznej
Prowadzący: dr Krzysztof Polko
ELEKTROSTATYKA.
Zapis prezentacji:

Wykład 2 4.1 Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących siły F działającej pomiędzy dwoma ładunkami Q1 i Q2; F  Q1 • Q2 F  1/r2 F jest przyciągająca dla ładunków przeciwnych (+/-) a odpychająca dla jednakowych (+/+), (-/-) i działa wzdłuż linii łączącej ładunki. Prawo coulomba W doświadczeniach swoich Coulomb posługiwał się tzw. Wagą Skręceń Reinhard Kulessa

Prawo swoje Coulomb sformułował następująco: Waga Skręceń + + - Równowaga następowała wtedy, gdy moment sił sprężystości nici był równy momentowi związanemu z oddziaływaniem ładunków. Prawo swoje Coulomb sformułował następująco: (4.1) Reinhard Kulessa

jest wektorem położonym na linii łączącej dwa oddziałujące ładunki. Ze znajomości wielkości siły i odległości pomiędzy ładunkami możemy przez definicję stałej k zdefiniować wielkość ładunku. W układzie SI Gdzie c jest prędkością światła w próżni: c = 299792458 m/s jest przenikalnością elektryczną próżni i jest równe: Reinhard Kulessa

Jednostką ładunku w układzie SI jest KULOMB. Ciało posiada ładunek jednego kulomba jeśli na równy sobie działa z odległości jednego metra siłą 9. 109 Newtona. Prawo Kulomba jest spełnione w fizyce makroskopowej i atomowej z dokładnością jak 1 do 109. Jeśli umieścimy dwa ciała o masach po 1 kilogramie i ładunku jednego kulomba w odległości 1m od siebie, to stosunek siły kulombowskiej do siły grawitacji ma się jak 1019: 1. 1C 1C 1m 1 kg 1 kg Reinhard Kulessa

Pole elektryczne 5.1 Natężenie pola elektrycznego Z prawa Coulomba wiemy, że ładunki oddziałują pomiędzy sobą siłą zależną od wielkości tych ładunków i ich odległości. Możemy więc powiedzieć, że wokół każdego ładunku roztacza się pewien obszar, POLE, w którym na inne ładunki działają siły kulombowskie. Pole wytworzone przez ładunki elektryczne nazywamy polem elektrycznym. Pole takie charakteryzuje się natężeniem informującym nas o wielkości siły działającej na ładunek umieszczony w tym polu. Reinhard Kulessa

E F r Q Natężenie pola elektrycznego definiujemy jako stosunek siły działającej na ładunek próbny q0 umieszczony w polu, do wielkości tego ładunku. z E F q0 r y Q x (5.1) Reinhard Kulessa

We wzorze (5.1) granicę dla q0  0 wprowadzamy dlatego, aby otrzymać wartość natężenia pola elektrycznego pochodzącego tylko od ładunku Q . Q2 r Px i Qi Q1 Q4 Q3 r -  i x y z Fakt, że natężenie pola elektrycznego jest proporcjonalne do wielkości ładunku, leży u podstawy zasady superpozycji. Zasada ta mówi, że natężenie pola elektrycznego w danym punkcie jest sumą pól pochodzących od poszczególnych ładunków. Reinhard Kulessa

Dla układu ładunków punktowych otrzymujemy zgodnie z zasadą superpozycji następujące wyrażenie na natężenie pola elektrycznego: (5.2) Ładunek może być rozłożony nie tylko punktowo, ale również objętościowo lub powierzchniowo. Jeśli zdefiniujemy gęstość ładunku jako (x,y,z) [C/cm3], to ładunek zawarty w elemencie objętości d jest równy: dQ =  d. Reinhard Kulessa

P  r -  r d  z x Obłok ładunku y Natężenie pola w punkcie pochodzącego od ładunku rozmieszczonego w objętości  dane jest wzorem: x (5.3) Reinhard Kulessa

Analogiczny wzór możemy napisać dla ładunku rozłożonego na powierzchni A z gęstością powierzchniową (x,y,z). z Px dA A r  Natężenie pola w punkcie P pochodzącego od ładunku rozmieszczonego na powierzchni A dane jest wzorem: y x (5.3a) Reinhard Kulessa

5.2 Prawo Gaussa We wzorze (3.1) podaliśmy definicję strumienia dowolnego wektora pola. W ten sam sposób możemy zdefiniować strumień natężenia pola elektrycznego. Prawo Gaussa mówi nam, że: Strumień natężenia pola elektrycznego E przez dowolną powierzchnię, równa się sumie całkowitego ładunku zamkniętego w tej powierzchni, razy stała k. A) dA E Q r0 Reinhard Kulessa

W układzie SI otrzymujemy na wartość strumienia w omawianym (5.5) W układzie SI otrzymujemy na wartość strumienia w omawianym przypadku wartość ( ): Reinhard Kulessa

B). Tą samą wartość strumienia natężenia pola elektrycznego otrzymujemy, otaczając ładunek dowolną powierzchnią A. dA`` dA` E dA0 E0 dA Q+ r0 A Reinhard Kulessa

C). Wiele ładunków zamkniętych powierzchnią. Ponieważ E1/r2, stąd wynika, że E=E0(r0/r)2. Z drugiej strony dA’/dA0=(r/r0)2. Wynika z tego, że d= E dA’= E0 dA0. Otrzymujemy więc na strumień natężenia pola elektrycznego taki sam rezultat jak w punkcie A). (5.4a) C). Wiele ładunków zamkniętych powierzchnią. A A’ Reinhard Kulessa

Gdzie jest całkowitym ładunkiem. (5.4b) Gdzie jest całkowitym ładunkiem. D). Ładunki Q znajdujące się poza zamkniętą powierzchnią Zgodnie z C) =0. Przez powierzchnię wychodzi tyle samo linii pola, co wchodzi. A Reinhard Kulessa

Jeśli mamy do czynienia z objętościowym rozkładem ładunku (x,y,z), wtedy przyjmując, że (x,y,z)=dQ/d, równanie (4.5b) przyjmie postać: (5.5) Pamiętamy, że A jest całkowitym polem powierzchni otaczającej ładunek, a  całkowitą objętością zajmowaną przez ładunek. Podsumowanie: Strumień natężenia pola elektrycznego przez dowolną powierzchnię, obejmujący dowolny rozkład ładunku, jest niezależny od kształtu tej powierzchni i zależy jedynie od wielkości ładunku położonego wewnątrz powierzchni. Reinhard Kulessa

5.3 Prawo Gaussa w postaci różniczkowej Korzystając z równania (3.8) możemy sformułować twierdzenie Gaussa, które mówi, że całkowity strumień wektora wychodzący przez powierzchnię zamkniętą otaczająca jakiś obszar w polu wektorowym, jest równy rozciągniętej na całą objętość obszaru całce z dywergencji tego wektora. E d dA divE Reinhard Kulessa

(5.6) Jeśli porównamy równania (5.5) i (5.6) to otrzymamy różniczkową postać prawa Gaussa. (5.7) Ładunki elektryczne możemy więc nazwać źródłami pola elektrycznego. Gdy nie ma wypływającego z objętości strumienia, nie ma źródeł. Pole v, dla którego div v = 0 nazywamy polem bezźródłowym. Reinhard Kulessa

5.4 Twierdzenie Stokes’a A Analogicznie do związku pomiędzy dywergencją a przestrzenną gęstością strumienia pola wektorowego, istnie je związek pomiędzy składowymi rotacji a powierzchniowymi gęstościami odpowiednich cyrkulacji. Wektor n jest wektorem prostopadłym do elementu powierzchni dA. Wobec tego wektor dA = dA n dA A n Powierzchnia A jest naciągnięta na pętlę  rot v Reinhard Kulessa

Określa to twierdzenie Stokes’a (5.8) Pole wektorowe może być polem sił F. Wiemy, że pole wektorowe jest polem bezwirowym, jeśli rotacja tego pola jest równa zero. Dla bezwirowego pola sił (rot F = 0) wynika, że praca siły F po zamkniętym obwodzie jest równa zero. Takie pole sił nazywamy polem zachowawczym. Reinhard Kulessa

Natężenie pola elektrycznego ładunku punktowego spełnia tą zależność: O polu elektrycznym wiemy, że jest polem centralnym. Dla pola centralnego cyrkulacja wektora pola jest równa zero, czyli Natężenie pola elektrycznego ładunku punktowego spełnia tą zależność: Weźmy rozkład linii sił natężenia pola pochodzących od ładunku punktowego. Reinhard Kulessa

Krążenie natężenia pola elektrycznego liczymy po zielonym konturze . Na łukach  E Na promieniach przyczynki się nawzajem znoszą. Wynika stąd, że . . Czyli, Pole elektrostatyczne jest więc polem bezwirowym. Reinhard Kulessa

5.5 Potencjał skalarny pola elektrycznego. Z bezwirowości pola elektrostatycznego wynika istnienie potencjału skalarnego V(r) takiego, że; (5.9) 5.5 Potencjał skalarny pola elektrycznego. Do wyrażenia na natężenie pola elektrycznego postaci (5.9) możemy dojść w oparciu o wzór (5.3). (5.3) Reinhard Kulessa

Występujący w tym wzorze element objętości d możemy zapisać jako d = d3 = d 1 · d 2 · d 3. Zauważmy, że dla funkcji występującej pod całką występuje następująca zależność: . Wiedząc, że składowe gradientu są następujące: Reinhard Kulessa

, oraz otrzymamy: Reinhard Kulessa

W oparciu o podane wyrażenia możemy wzór na natężenie pola elektrycznego pochodzącego od objętościowego rozkładu ładunków (5.3) napisać następująco: . Funkcję skalarną (5.10) Nazywamy skalarnym potencjałem pola elektrycznego. Reinhard Kulessa

Dla pojedynczego ładunku w oparciu o wzór (5.1) mamy: Analogiczne wyrażenia na potencjał pola dla układu ładunków powierzchniowych, punktowych i dla ładunku pojedynczego możemy wyprowadzić odpowiednio w oparciu o równania (5.3a), (5.2) i (5.1). Dla pojedynczego ładunku w oparciu o wzór (5.1) mamy: Wiadomo, że , Reinhard Kulessa

Po wykonaniu całkowania otrzymujemy : Czyli . . Po wykonaniu całkowania otrzymujemy : Przyjmujemy, że w nieskończoności (r =) potencjał pochodzący od ładunku Q jest równy zero. Musimy wtedy przyjąć, że stała C jest równa zero. Reinhard Kulessa

Można łatwo pokazać, że wyrażenie pod całką jest równe czyli , Ten sam wynik otrzymamy, jeśli wprowadzimy odpowiednie granice całkowania (5.11) Można łatwo pokazać, że wyrażenie pod całką jest równe czyli , (5.11a) Potencjał określony we wzorze (5.11) jest równy pracy potrzebnej do przeniesienia ładunku jednostkowego q=1C z nieskończoności na odległość r od ładunku Q. Reinhard Kulessa

W oparciu o definicję potencjału (5.11a) możemy zdefiniować różnicę potencjału UAB pomiędzy dwoma punktami pola elektrostatycznego. (5.11b) Ze względu na to, że pole elektryczne jest polem centralnym i ma charakter zachowawczy (r. (5.9) ), tak samo jak w mechanice, praca potrzebna na przesunięcie ładunku w polu jest niezależna od drogi po której ją wykonujemy. Reinhard Kulessa

Praca potrzebna do przesunięcia ładunków Q z A do B w polu elektrycznym jest taka sama niezależna od drogi. Q1 Q2 Q3 A Q1 Q2 Q3 B Reinhard Kulessa

Praca wykonana na przesunięcie ładunku po drodze zamkniętej jest Q Praca wykonana na przesunięcie ładunku po drodze zamkniętej jest równa zero Reinhard Kulessa

Możemy w oparciu o ostatnie równanie napisać; Ponieważ ds 2 Możemy w oparciu o ostatnie równanie napisać; 1 (5.12) Dla układu N ładunków punktowych otrzymamy na potencjał w punkcie r wyrażenie: (5.13) Reinhard Kulessa

5.5 Równanie Poissona i Laplace’a Pamiętamy podane w równaniu (5.7) różniczkowe prawo Gaussa. Jeśli do tego równania podstawimy wartość natężenia pola elektrycznego E(r) wyrażone przez potencjał pola V(r) zgodnie ze wzorem (5.9), otrzymamy następujące równanie: (5.14) zwane równaniem Poissona. Reinhard Kulessa

Ostatnie równanie możemy napisać w postaci operatorowej. Z drugiej strony Reinhard Kulessa

Operator nosi nazwę laplasjanu. (5.15) Bardzo często stosuje się zapis . W przypadku pola bezźródłowego równanie Poissona przechodzi w równania Laplace’a. (5.16) Reinhard Kulessa

Równanie Poissona i Laplace’a, oraz prawo Gaussa, są trzema podstawowymi równaniami pola elektrycznego E. Wynikają one bezpośrednio z prawa Coulomba. Wprowadzenie strumienia pola elektrycznego  było praktyczne i poglądowe, lecz można się było bez tego obyć. Reinhard Kulessa

5.6 Podsumowanie wiadomości o polu elektrycznym Na poprzednich wykładach poznaliśmy następujące informacje dotyczące pola elektrycznego: Cyrkulacja pola Rotacja pola , definicja pola bezwirowego, pola o zerowej rotacji Twierdzenie Stokes’a, podjące związek pomiędzy całką po konturze, a całką powierzchniową, Definicja gradientu pola, Istnienie dla pola elektrycznego, które jest bezwirowe potencjału skalarnego, którego gradient jest równy natężeniu pola elektrycznego. Reinhard Kulessa

Dywergencję funkcji wektorowej, Prawo Gaussa, również w postaci różniczkowej Twierdzenie Gaussa podające związek pomiędzy całką powierzchniową a objętościową , Definicja potencjału skalarnego pola , Równania Poissona i Laplace’a pozwalające wyliczyć potencjał pola, Rozważmy pole elektryczne, dla którego gęstość ładunku =0. Wtedy dla potencjału spełnione jest równanie Poissona z =0, czyli równanie Laplace’a, V=0 . Jednoznaczne znalezienie potencjału wymaga dodatkowo podania warunków brzegowych, inaczej zawsze można by podać rozwiązanie V0. Reinhard Kulessa