WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia.

Slides:



Advertisements
Podobne prezentacje
Sympleksy n=2.
Advertisements

Teoria Grafów.
DOMINOWANIE W GRAFACH Magdalena Lemańska.
Grafy spełniające nierówność Γ(G) < IR(G)
Zadania przygotowawcze na egzamin
ALGORYTMY GRAFOWE.
Grażyna Mirkowska PJWSTK 15 listopad 2000
Grafy inaczej, czyli inne modele grafów
WYKŁAD 6. Kolorowanie krawędzi
ELEMENTY TEORII GRAFÓW
Wykład 6 Najkrótsza ścieżka w grafie z jednym źródłem
Minimalne drzewa rozpinające
HARALD KAJZER ZST nr 2 im. M. Batko
dr Przemysław Garsztka
Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. Wyodrębnij prawy i lewy łańcuch punktów,
Matematyka Dyskretna, G.Mirkowska, PJWSTK
ALGORYTMY I STRUKTURY DANYCH
Twierdzenie Thevenina-Nortona
Ciągi de Bruijna generowanie, własności
-skeletony w przestrzeniach R 2 i R 3 Mirosław Kowaluk Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.
Liczby Pierwsze - algorytmy
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 2. Kolorowanie wierzchołków
WYKŁAD 7. Spójność i rozpięte drzewa
WYKŁAD 1. Grafy są wokół nas. Pojęcia wstępne.
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf.
WYKŁAD 8. Siła spójności Wierzchołek v nazywamy wierzchołkiem cięcia grafu G, gdy podgraf G-v ma więcej składowych spójności niż G. Krawędź e nazywamy.
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
WYKŁAD 8. Siła spójności A,B – dowolne podzbiory V(G)
KOLOROWANIE MAP.
WYKŁAD 3. Kliki i zbiory niezależne
GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf G.
„METODA FOURIERA DLA JEDNORODNYCH WARUNKÓW BRZEGOWYCH f(0)=f(a)=0”
Analiza Matematyczna część 2
Materiały pomocnicze do wykładu
12 grudnia 2001Matematyka Dyskretna, Elementy Kombinatoryki G.Mirkowska, PJWSTK 1 Wykład 11 Elementy Kombinatoryki.
Elementy Rachunku Prawdopodobieństwa c.d.
Elementy Kombinatoryki (c.d.)
Macierz incydencji Macierzą incydencji grafu skierowanego D = (V, A), gdzie V = {1, ..., n} oraz A = {a1, ..., am}, nazywamy macierz I(D) = [aij]i=1,...,n,
Hipergrafy Hipergraf jest rozszerzeniem pojęcia grafu. Hipergraf różni się od grafu nieskierowanego tym, że każda hiperkrawędź może być incydentna do dowolnej.
ALGORYTMY I STRUKTURY DANYCH
WYKŁAD 7. Spójność i rozpięte drzewa Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja.
Zależności funkcyjne.
Przepływy w sieciach. Twierdzenie minimaksowe.
Liczby Ramseya Klaudia Sandach.
Krzysztof Kucab Rzeszów, 2012
Geometria obliczeniowa Wykład 3
I. Informacje podstawowe
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Paradoksy logiczne i inne 4 marca 2010.
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Technika optymalizacji
II. Matematyczne podstawy MK
Algorytmy i Struktury Danych
PLANARNOŚĆ i KOLOROWANIE MAP. Problem Jaka jest minimalna liczba kolorów, za pomocą których można pokolorować obszary województw na mapie Polski tak,
Drogi i cykle Eulera w grafach nieskierowanych
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
Algorytmy grafowe Minimalne drzewa rozpinające
GRA CHOMP. Czym jest chomp? Jest to gra dla dwóch osób, rozgrywana na prostokątnej tablicy, zwanej „tabliczką czekolady”
NP-zupełność Problemy: rozwiązywalne w czasie wielomianowym - O(nk)
Matematyka Ekonomia, sem I i II.
Autor: Michał Salewski
Grafy.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów
Geometria obliczeniowa Wykład 3
Geometria obliczeniowa Wykład 3
Obwody elektryczne wykład z 14.12
ALGORYTMY I STRUKTURY DANYCH
Zapis prezentacji:

WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia w G. Skojarzenie M w grafie G nazywamy doskonałym, gdy |M|=|V(G)|/2.

Tw. Tutte’a Niech q(G) będzie liczbą nieparzystych składowych grafu G. Tutte (1947) G ma skojarzenie doskonałe wgdy zachodzi warunek Tutte’a:

Pokrycia wierzchołkowe Podzbiór U zbioru V(G) nazywamy pokryciem wierzchołkowym (krawędzi), jeśli każda krawędź grafu G ma przynajmniej jeden koniec w U. Moc najmniejszego pokrycia - β(G). Trywialnie,

Skojarzenia w grafach 2- dzielnych – tw. Königa Twierdzenie (König, 1931) Dla grafów dwudzielnych α’(G)= β(G).

Warunek (konieczny) Halla na istnienie skojarzenia zawierającego (nasycającego) zbiór A A B

Tw. Halla Tw. Halla (1935) Dwudzielny graf G o dwupodziale (A,B) posiada skojarzenie nasycające A wgdy zachodzi warunek Halla:

1. dowód Tw. Halla U – minimalne pokrycie E(G) Jeśli G nie ma skojarzenia nasycającego A, to z Tw. Königa: |U|= β(G) = α’(G )<|A| Nie ma krawędzi miedzy A-U i B-U. Zatem i warunek Halla nie zachodzi dla S=A-U.

Ilustracja 1. dowodu Tw. Halla A B U U

2. dowód Tw. Halla Indukcja względem |A|; prawda dla |A|=1. Niech |A|>1 i załóżmy prawdziwość dla <|A|. Dwa przypadki I. Warunek Halla zachodzi z nadmiarem, tzn. Usuńmy końce dowolnej krawędzi ab: G’=G-{a,b} G’ wciąż spełnia warunek Halla i z założenia ind. ma skojarzenie nasycające A-{a}, które wraz z krawędzią ab tworzy skojarzenie nasycające A.

2. dowód Tw. Halla –Przypadek II: Z założenia ind. podgraf G’ indukowany w G przez S’ i N(S’) ma skojarzenie nas. S’. Ale podgraf G’’=G-V(G’) też spełnia warunek Halla i z zał. ind. ma skojarzenie nas. A-S’. Rzeczywiście, gdyby istniał podzbiór S’’ w A-S’, dla którego |N(S’’)|<|S’’|, to -- sprzeczność. 

Ilustracja S’ N(S’) G’’ S’’ N(S’’)

3. dowód Tw. Halla Prosty wniosek z Tw. Tutte’a (do samodzielnego zastanowienia się)