Porównywanie średnich dwóch prób zależnych

Slides:



Advertisements
Podobne prezentacje
ESTYMACJA PRZEDZIAŁOWA
Advertisements

Test zgodności c2.
Rangowy test zgodności rozkładów
Testy sekwencyjne Jan Acedański.
Metody losowania próby
hasło: student Szymon Drobniak pokój konsultacje: wtorek 13-14
Wykład 9 Analiza wariancji (ANOVA)
Wykład 7: Moc Moc testu to prawdopodobieństwo odrzucenia H0, gdy prawdziwa jest HA Moc=czułość testu Moc = 1 – Pr (nie odrzucamy H0, gdy prawdziwa jest.
Porównywanie średnich dwóch prób niezależnych o rozkładach normalnych (test t-studenta)
Analiza wariancji jednoczynnikowa
Zmienne losowe i ich rozkłady
Estymacja przedziałowa
Analiza wariancji Analiza wariancji (ANOVA) stanowi rozszerzenie testu t-Studenta w przypadku porównywanie większej liczby grup. Podział na grupy (czyli.
Wnioskowanie statystyczne CZEŚĆ III
Statystyka w doświadczalnictwie
hasło: student Joanna Rutkowska Aneta Arct
Mgr Sebastian Mucha Schemat doświadczenia:
Niepewności przypadkowe
Wykład 11 Analiza wariancji (ANOVA)
Metody Przetwarzania Danych Meteorologicznych Wykład 4
Nierówność informacyjna
Pobieranie próby Populacja generalna: zbiór wyników wszystkich możliwych doświadczeń określonego typu. Próba n-wymiarowa: zbiór n wyników doświadczeń.
Modele (hipotezy) zagnieżdżone
Test t-studenta dla pojedynczej próby
Próby niezależne versus próby zależne
Próby niezależne versus próby zależne
Test t-studenta dla pojedynczej próby
Analiza wariancji ANOVA efekty główne
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
Rozkład t.
Hipotezy statystyczne
Testy nieparametryczne
Dlaczego obserwujemy??? istotny wpływ, istotną różnicę, istotną zależność.
Hipotezy statystyczne
Testy nieparametryczne
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Analiza wariancji jednoczynnikowa.
Testy nieparametryczne
Hipotezy statystyczne
Analiza wariancji ANOVA czynnikowa ANOVA
Statystyka - to „nie boli”
Testy statystycznej istotności
Porównywanie średnich 2 i więcej prób o rozkładach innych niż normalny
Seminarium licencjackie Beata Kapuścińska
Analiza wariancji ANOVA efekty główne. Analiza wariancji ANOVA ANOVA: ANalysis Of VAriance Nazwa: wywodzi się z faktu, że w celu testowania statystycznej.
Testowanie hipotez statystycznych
Porównywanie średnich prób o rozkładach normalnych (testy t-studenta)
Dopasowanie rozkładów
Wnioskowanie statystyczne
Rozkład wariancji z próby (rozkład  2 ) Pobieramy próbę x 1,x 2,...,x n z rozkładu normalnego o a=0 i  =1. Dystrybuanta rozkładu zmiennej x 2 =x 1 2.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych dr hab. Mieczysław Kowerski
Testowanie hipotez Jacek Szanduła.
Statystyczna Analiza Danych SAD2 Wykład 4 i 5. Test dla proporcji (wskaźnika struktury) 2.
Statystyczna analiza danych SAD2 Wykład 5. Testy o różnicy wartości średnich dwóch rozkładów normalnych (znane wariancje) Statystyczna analiza danych.
Monte Carlo, bootstrap, jacknife. 2 Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej :
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
Testy nieparametryczne – testy zgodności. Nieparametryczne testy istotności dzielimy na trzy zasadnicze grupy: testy zgodności, testy niezależności oraz.
STATYSTYKA – kurs podstawowy wykład 7 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
STATYSTYKA – kurs podstawowy wykład 6 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Weryfikacja hipotez statystycznych „Człowiek – najlepsza inwestycja”
Statystyka medyczna Piotr Kozłowski www: 1.
Testy nieparametryczne
Rozkład z próby Jacek Szanduła.
Statystyka matematyczna
Statystyka matematyczna
Porównywanie średnich prób o rozkładach normalnych (testy t-studenta)
Monte Carlo, bootstrap, jacknife
Test t-studenta dla pojedynczej próby
Zapis prezentacji:

Porównywanie średnich dwóch prób zależnych

Próby niezależne versus próby zależne Próby niezależne: mierzone w dwóch różnych obiektach albo w tym samym obiekcie ale nie poddanym ingerencji. czas

Próby niezależne versus próby zależne analizy dwóch RÓŻNYCH hoteli analizy dwóch RÓŻNYCH gmin

Próby niezależne versus próby zależne Próby zależne: te same obiekty stanowiące próbę są badane dwukrotnie w różnych warunkach, po ingerencji; ingerencja czas czas

Próby niezależne versus próby zależne Badanie klienteli hotelu przed i po remoncie

Schematy postępowania 2 GRUPY(ZMIENNE) ZALEŻNE rozkład normalny rozkład inny niż normalny test parametryczny test t-studenta test nieparametryczny test znaków, test kolejności par Wilcoxona xśr 1 xśr 2 xśr 1 xśr 2

Test t-studenta dla grup zależnych Wynik testu: wartość t i poziom p Poziom p: prawdopodobieństwo błędu związanego z przyjęciem hipotezy o istnieniu różnic między średnimi. Jeśli p<0.05 to średnie istotnie się różnią! Brak testu równości wariancji.

Test t-studenta dla grup zależnych Jeśli dwie grupy obserwacji (które mają zostać porównane) zostały oparte na tej samej grupie obiektów zmierzonych dwukrotnie (np. przed i po zabiegu), to wówczas znaczna część zmienności wewnątrzgrupowej w obydwu grupach wyników może zostać przypisana początkowej indywidualnej różnicy pomiędzy obiektami.

Test t-studenta dla grup zależnych Odejmując wyniki przed zabiegiem od wyniku po zabiegu i analizując "czyste" różnice dokonujemy wyeliminowania tej części wariancji w naszym zbiorze danych, która pochodzi od różnic w wartościach bezwzględnych poszczególnych obiektów pomiarowych.