Alfred Stach Instytut Paleogeografii i Geoekologii

Slides:



Advertisements
Podobne prezentacje
Analiza współzależności zjawisk
Advertisements

Zmienne losowe i ich rozkłady
PODSUMOWANIE WIADOMOŚCI ZE STATYSTYKI
BUDOWA MODELU EKONOMETRYCZNEGO
Jak mierzyć asymetrię zjawiska?
Jak mierzyć zróżnicowanie zjawiska? Wykład 4. Miary jednej cechy Miary poziomu Miary dyspersji (zmienności, zróżnicowania, rozproszenia) Miary asymetrii.
ANALIZA STRUKTURY SZEREGU NA PODSTAWIE MIAR STATYSTYCZNYCH
Statystyka w doświadczalnictwie
BIOSTATYSTYKA I METODY DOKUMENTACJI
Analiza korelacji.
Niepewności przypadkowe
Wykład 4 Rozkład próbkowy dla średniej z rozkładu normalnego
Alfred Stach Instytut Paleogeografii i Geoekologii
Alfred Stach Instytut Paleogeografii i Geoekologii
Alfred Stach Instytut Paleogeografii i Geoekologii
Alfred Stach Instytut Paleogeografii i Geoekologii
GEOSTATYSTYKA Wykłady dla III roku Geografii specjalność – geoinformacja Estymacja na podstawie danych jednej zmiennej I Alfred Stach Instytut Paleogeografii.
GEOSTATYSTYKA I ANALIZA PRZESTRZENNA Wykład dla III roku Geografii specjalność - geoinformacja Alfred Stach Instytut Geoekologii i Geoinformacji Wydział
GEOSTATYSTYKA Wykłady dla III roku Geografii specjalność – geoinformacja Estymacja na podstawie danych jednej zmiennej II Alfred Stach Instytut Paleogeografii.
Alfred Stach Instytut Geoekologii i Geoinformacji
Alfred Stach Instytut Geoekologii i Geoinformacji
Alfred Stach Instytut Geoekologii i Geoinformacji
Alfred Stach Instytut Paleogeografii i Geoekologii
GEOSTATYSTYKA I ANALIZA PRZESTRZENNA Wykład dla III roku Geografii specjalność - geoinformacja Alfred Stach Instytut Geoekologii i Geoinformacji Wydział
Alfred Stach Instytut Paleogeografii i Geoekologii
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
Co to są rozkłady normalne?
Korelacja, autokorelacja, kowariancja, trendy
Fraktale i chaos w naukach o Ziemi
Konstrukcja, estymacja parametrów
Analiza współzależności cech statystycznych
dr hab. Ryszard Walkowiak prof. nadzw.
Elementy Rachunku Prawdopodobieństwa i Statystyki
Rozkłady wywodzące się z rozkładu normalnego standardowego
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Statystyka ©M.
Podstawy statystyki, cz. II
Planowanie badań i analiza wyników
Regresja wieloraka.
Co to jest dystrybuanta?
Przedmiot: Ekonometria Temat: Szeregi czasowe. Dekompozycja szeregów
Dopasowanie rozkładów
Wnioskowanie statystyczne
STATYSTYKA Pochodzenie nazwy:
Statystyka medyczna Piotr Kozłowski
Elementy geometryczne i relacje
Program przedmiotu “Opracowywanie danych w chemii” 1.Wprowadzenie: przegląd rodzajów danych oraz metod ich opracowywania. 2.Podstawowe pojęcia rachunku.
Przenoszenie błędów (rachunek błędów) Niech x=(x 1,x 2,...,x n ) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych.
Podstawowe pojęcia i terminy stosowane w statystyce
Statystyczna analiza danych w praktyce
Jak mierzyć asymetrię zjawiska? Wykład 5. Miary jednej cechy  Miary poziomu  Miary dyspersji (zmienności, zróżnicowania, rozproszenia)  Miary asymetrii.
Statystyczna analiza danych
Statystyczna analiza danych
Statystyczna analiza danych
Statystyczna analiza danych
Korelacje dwóch zmiennych. Korelacje Kowariancja.
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
STATYSTYKA – kurs podstawowy wykład 11
Niepewności pomiarów. Błąd pomiaru - różnica między wynikiem pomiaru a wartością mierzonej wielkości fizycznej. Bywa też nazywany błędem bezwzględnym.
Statystyka matematyczna
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
MIARY STATYSTYCZNE Warunki egzaminu.
Korelacja i regresja liniowa
statystyka podstawowe pojęcia
Alfred Stach Instytut Paleogeografii i Geoekologii UAM
Zapis prezentacji:

GEOSTATYSTYKA Wykład dla III roku Geografii specjalność - geoinformacja Alfred Stach Instytut Paleogeografii i Geoekologii Wydział Nauk Geograficznych i Geologicznych UAM

Notacja i terminologia 1 Cecha – fizyczna właściwość (parametr) oznaczana kursywą małą literą np. z lub s. Cechy ciągłe takie jak np. stężenia, są oznaczane na skali ilościowej , cechy kategoryzowane mogą przybierać określoną, limitowaną ilość wartości, zazwyczaj nie mających charakteru porządkowego np. typ skał czy kategoria użytkowania terenu Zmienna – jest oznaczana kursywą i duża literą np. Z lub S i oznacza zbiór wartości lub stanów cechy z lub s, które mogą występować na analizowanym obszarze lub w punkcie o wektorze współrzędnych u. W tym wypadku oznaczane zmienna jest oznaczana Z(u) lub S(u).

Notacja i terminologia 1 Obiekt – Cecha jest określana (mierzona) na fizycznej próbce, jak na przykład okruch skały, czy rdzeń glebowy itp. W przypadku analizy eksploracyjnej nieprzestrzennej (bez uwzględniania lokalizacji) o próbce mówimy obiekt. We wszystkich innych sytuacjach każda próbka jest związana ze ścisłą lokalizacją miejsca jej poboru, które określamy u Populacja – jest zdefiniowana jako zbiór wszystkich pomiarów interesującej nas cechy, które mogą być dokonane w obrębie obszaru badań. Skończona ilość pomiarów, która dysponujemy to próbka lub podzbiór.

Notacja i terminologia 1 Parametr – to stała wartość (nie losowa) charakteryzująca model, na przykład wariancja nuggetowa semiwariogramu, lub średnia rozkładu funkcji prawdopodobieństwa na podstawie której modelujemy teoretyczny histogram Statystyka – jest to wielkość charakteryzująca rozkład, która może dotyczyć jednej lub większej ilości cech, i/lub jednej lub większej ilości lokalizacji w przestrzeni. Jednozmienna, dwuzmienna lub wielozmienna statystyka jest związana z charakterystyką jednej, dwóch lub wielu cech. Terminy statystyka jednopunktowa, dwupunktowa lub wielopunktowa są stosowane są stosowane kiedy odnosi się ona do tej samej cechy w jednej, dwóch lub wielu lokalizacjach. Na przykład współczynnik korelacji jest statystyka dwuzmienną, podczas gdy semiwariogram – dwupunktową. Krossemiwariogram jest statystyką dwuzmienną i dwupunktową, ponieważ uwzględnia dwie różne cechy zarejestrowane w dwóch odmiennych lokalizacjach.

Przestrzenna eksploracyjna analiza danych Wykresy rozrzutu jednej zmiennej z przesunięciem (h-scattergram) Miary ciągłości i zmienności przestrzennej zmiennych ilościowych Funkcja kowariancji Korelogram Semiwariogram Anizotropia miar ciągłości i zmienności przestrzennej Miary ciągłości i zmienności przestrzennej zastosowane do zmiennych kategoryzowanych Struktura przestrzenna analizowanych danych satelitarnych Anizotropia przestrzenna Wpływ wartości ekstremalnych Interpretacja struktury zmienności przestrzennej

Statystyczne miary zmienności jednej zmiennej: wariancja i odchylenie standardowe

Statystyczne miary zmienności dwóch zmiennych: kowariancja i współczynnik korelacji

Wykres rozrzutu XY i miary relacji dwóch zmiennych w tych samych lokalizacjach

A co uzyskamy jeśli zbadamy relację między wartościami tej samej cechy w różnych lokalizacjach? Regularny układ punktów Porównywanie wartości cechy punktów odległych np. od 100 m Regularny układ punktów Porównywanie wartości cechy punktów odległych np. od 200 m

A co uzyskamy jeśli zbadamy relację między wartościami tej samej cechy w różnych lokalizacjach? Idea porównania wartości cechy tej samej cechy w różnych lokalizacjach dla nieregularnego układu punktów pomiarowych – przedział odległości u+h „głowa” head „ogon” tail h u

Wykresy rozrzutu jednej zmiennej z przesunięciem (h-scattergram) Dane z punktów odległych od siebie o 4522,5m Średnia odległość 17,645m Ilość par punktów: 74 Kowariancja: 81,715 Korelacja: 0,66685 Statystyki podzbiorów: Średnia dla z(): 326,12 Wariancja dla z(): 122.54 Średnia dla z(+45): 326,12 Wariancja dla z(+45): 122.54 Dane cechy b1_03b ze zbioru Horbye3.dat

Dane cechy b1_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 45-90m Średnia odległość 51,381m Ilość par punktów: 640 Kowariancja: 63,037 Korelacja: 0,4354 Statystyki podzbiorów: Średnia dla z(): 326,26 Wariancja dla z(): 144.78 Średnia dla z(+45): 326,26 Wariancja dla z(+45): 144.78

Dane cechy b1_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 90-135m Średnia odległość 92,41m Ilość par punktów: 1048 Kowariancja: 51,472 Korelacja: 0,31496 Statystyki podzbiorów: Średnia dla z(): 327,75 Wariancja dla z(): 163.43 Średnia dla z(+45): 327,75 Wariancja dla z(+45): 163.43

Dane cechy b1_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 135-180m Średnia odległość 136,27m Ilość par punktów: 1472 Kowariancja: 33,667 Korelacja: 0,20181 Statystyki podzbiorów: Średnia dla z(): 327,91 Wariancja dla z(): 166.83 Średnia dla z(+45): 327,91 Wariancja dla z(+45): 166.83

Dane cechy b1_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 225-270m Średnia odległość 226,47m Ilość par punktów: 2304 Kowariancja: 12,211 Korelacja: 0,078558 Statystyki podzbiorów: Średnia dla z(): 327,71 Wariancja dla z(): 155.44 Średnia dla z(+45): 327,71 Wariancja dla z(+45): 155.44

Dane cechy b1_03b ze zbioru Horbye3.dat 17,6m 0,667 51,4m 0,435 92,4m 0,315 136,3m 0,202 181,3m 0,170 226,5m 0,079 270,4m 0,075

Funkcja kowariancji Autokowariancja przestrzenna Średnia wartości podzbioru ogona (tail values) Średnia wartości podzbioru głowy (head values) Eksperymentalna funkcja autokowariancji = eksperymentalna funkcja kowariancji

Funkcja kowariancji

Eksperymentalna funkcja autokorelacji = korelogram Autokorelacja przestrzenna Wariancja wartości podzbioru „ogona” Wariancja wartości podzbioru „głowy” Eksperymentalna funkcja autokorelacji = korelogram

Korelogram

Eksperymentalna funkcja semiwariancji = semiwariogram Semiwariancja empiryczna: połowa średniej kwadratu różnic wartości cechy w lokalizacjach odległych o wektor h. Miara średniego niepodobieństwa (różnicy) Interpretacja geometryczna: moment bezwładności wokół pierwszego bisektora wykresu rozrzutu z przesunięciem (h-scaterplot) Wariancja wartości podzbioru „ogona” Eksperymentalna funkcja semiwariancji = semiwariogram

Semiwariogram

Semiwariogram

Właściwości semiwariogramu – chmura semiwariogramu (variogram cloud)

Właściwości semiwariogramu wariancja próby semiwariancja progowa = sill zasięg autokorelacji = range semiwariancja nuggetowa = nugget

Właściwości semi-wariogramu Gringarten, Deutsch 2001

Właściwości semiwariogramu Tak jak inne statystyki typu wariancji, wartości kowariancji i semiwariogramu są bardzo czułe na występowanie danych ekstremalnych – potencjalnie błędnych. Stosuje się trzy sposoby aby ten problem rozwiązać: Transformację matematyczną danych (logarytmowanie, pierwiastkowanie itp.) , aby zredukować skośność ich histogramu, Usuwanie par danych, które zaburzają wartość semiwariancji dla określonych odstępów h. Procedura ta zwana jest czyszczeniem wykresu rozrzutu z przesunięciem („h-scattergram cleansing”). Używanie innych statystyk h-scattergramu, które są mniej czułe na występowanie danych ekstremalnych.

Mapa lokalizacyjna

Czyszczenie wykresu rozrzutu z przesunięciem

Semiwariogram zmodyfikowany Semiwariogram do potęgi :  = 2 – tradycyjny semiwariogram  = 1 – madogram  = ½ – rodogram

Semiwariogram zmodyfikowany - madogram

Anizotropia struktury przestrzennej W rzeczywistych układach przestrzennych różnica wartości cechy zależy nie tylko od odległości, ale także od kierunku Teoria + pomiar = precyzyjna prognoza

Anizotropia struktury przestrzennej Dwa sposoby obliczania kierunkowych miar ciągłości/zmienności przestrzennej

Geometryczna interpretacja powierzchni wariogramu (mapy wariogramu) Anizotropia geometryczna i Anizotropia strefowa

Geometryczna interpretacja powierzchni wariogramu (mapy wariogramu)

Geometryczna interpretacja powierzchni wariogramu (mapy wariogramu)

Geometryczna interpretacja powierzchni wariogramu (mapy wariogramu)

Anizotropia struktury przestrzennej – powierzchnia wariogramu zmienna b1_03b Dwuwymiarowy obraz powierzchni wariogramu próbki i populacji

Anizotropia struktury przestrzennej – powierzchnia wariogramu - zmienna b1_03b Trójwymiarowy obraz powierzchni wariogramu populacji i próbki

Anizotropia struktury przestrzennej – powierzchnia wariogramu - zmienna b1_03b

Wariogramy kierunkowe zmiennej b1_03b Wykres czerwony – kierunek maksymalnej ciągłości: kąt 320° Wykres czarny – kierunek minimalnej ciągłości: kąt 60°