FIZYKA dla studentów POLIGRAFII Wykład 4

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Wykład Zależność pomiędzy energią potencjalną a potencjałem
Reinhard Kulessa1 Wykład Środek masy Zderzenie elastyczne z nieruchomą cząstką 4.4 Całkowity pęd układu cząstek przy działaniu sił
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Przykłady zasad stosowanych w fizyce
Dynamika bryły sztywnej
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Siła,praca,moc,energia Opracował:mgr Zenon Kubat Gimnazjum w Opatowie
PRACA , moc, energia.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
1. Praca 2.Moc 3.Energia 4.Wzory 5.Przykładowe zadanie
Odkształcenia i zmiany prędkości
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
DYNAMIKA.
UKŁADY CZĄSTEK.
Układy cząstek.
Dynamika. Zasada zachowania pędu Zderzenia symulacja.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Wykład 4 dr hab. Ewa Popko
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Prędkość kątowa Przyśpieszenie kątowe.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Wykład V Zderzenia.
1.Praca 2. Siły zachowawcze 3.Zasada zachowania energii
Wykład III Zasady dynamiki.
BRYŁA SZTYWNA.
Wykład V dr hab. Ewa Popko
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Siły Statyka. Warunki równowagi.
(5-6) Dynamika, grawitacja
Test 2 Poligrafia,
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Pole magnetyczne
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 5
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
RUCH HARMONICZNY F = - mw2Dx a = - w2Dx wT = 2 P
Fizyka-Dynamika klasa 2
Opracowała Diana Iwańska
ZDERZENIA SPRĘŻYSTE CENTRALNE
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład bez rysunków Ruch jednostajny po okręgu
Projekt Program Operacyjny Kapitał Ludzki
Pęd ciała. Zasada zachowania pędu.
Zasada zachowania energii mechanicznej.
Energia.
ZASADA ZACHOWANIA ENERGII MECHANICZNEJ
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Przygotowanie do egzaminu gimnazjalnego
Dynamika.
181.Na poziomym stole pozioma siła F=15N zaczęła działać na ciało o masie m=1,5kg. Jaką drogę przebyło ciało do uzyskania prędkości v=10m/s, jeśli współczynnik.
Ruch w polu centralnym Siły centralne – siłę nazywamy centralną, gdy wszystkie kierunki Jej działania przecinają się w jednym punkcie – centrum siły a)
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
ZASADA ZACHOWANIA ENERGII Małgorzata Mergo, Anna Kierepka
Temat lekcji: Praca w polu grawitacyjnym
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
180.Jaką prędkość uzyskało spoczywające na poziomej powierzchni ciało o masie m=1kg pod działaniem poziomej siły F=10N po przebyciu odległości s=10m? Brak.
Dynamika punktu materialnego
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
Prowadzący: dr Krzysztof Polko
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU
Grawitacja Obliczyć wysokość na jaką wzniesie się ciało rzucone na Księżycu pionowo do góry z prędkością v=1000 m/s? Druga prędkość kosmiczna dla Księżyca.
Superpozycja natężeń pól grawitacyjnych
Zapis prezentacji:

FIZYKA dla studentów POLIGRAFII Wykład 4

Praca Jednostka pracy – 1J = 1N·1m

Praca w polu grawitacyjnym

Praca w polu grawitacyjnym   = 90 - (180 - ) =  - 90 sin = -sin(90 - ) = - cos  Praca siły grawitacji na drodze 12

Praca w polu grawitacyjnym   Praca siły grawitacji na drodze 34

Praca w polu grawitacyjnym  mg Praca siły grawitacji na drodze 23 ...i na drodze 41

– siła grawitacji jest siłą zachowawczą Siły zachowawcze Praca siły grawitacji po torze zamkniętym jest równa zeru – siła grawitacji jest siłą zachowawczą Praca siły zachowawczej nie zależy od drogi, a tylko od położenia punktu początkowego i końcowego. Jeśli praca siły po drodze zamkniętej nie równa się zeru, to siła ta jest dyssypatywna (rozpraszająca).

Energia potencjalna Energia potencjalna ciała w danym punkcie, względem określonego punktu odniesienia, równa jest pracy jaką wykonują siły zachowawcze przy przemieszczeniu  ciała z danego punktu do punktu odniesienia. Siła pola grawitacyjnego zależy od szybkości zmian energii potencjalnej w przestrzeni.

Energia kinetyczna Praca wykonana przez siłę działającą na ciało równa jest zmianie jego energii kinetycznej.

Energia kinetyczna Łatwiejsze wyprowadzenie wzoru na energię kinetyczną: Droga w ruchu jednostajnie przyspieszonym bez prędkości początkowej Stała siła F nadaje ciału przyspieszenie a

Prawo zachowania energii Praca siły zachowawczej przy przesunięciu z punktu A do B: Całkowita energia mechaniczna ciała, na które działają tylko siły zachowawcze, jest stała. Energia całkowita układu odosobnionego jest stała.

Prawo zachowania energii KE – energia kinetyczna PE – energia potencjalna m = 50 kg

Prawo zachowania pędu II zasada dynamiki: Jeżeli na układ nie działają siły zewnętrzne lub działa układ siła zrównoważonych, to pęd układu zachowuje wartość stałą.

Sprężyste zderzenie centralne Prawo zachowania pędu: Prawo zachowania energii: :

Sprężyste zderzenie centralne prędkość względna przed zderzeniem prędkość względna po zderzeniu Prędkość zbliżania się kul przed zderzeniem równa jest prędkości ich oddalania się po zderzeniu czyli ich prędkości względne przed i po zderzeniu są takie same.

Sprężyste zderzenie centralne m1 = m2 Przed zderzeniem Po zderzeniu

Sprężyste zderzenie centralne m2 m1 m1 = m2 v1 Przed zderzeniem v2 = 0 m2 m1 Po zderzeniu

Sprężyste zderzenie centralne m1 << m2 Przed zderzeniem m1 v1 m2 v2 = 0 Po zderzeniu m1 m2

Sprężyste zderzenie centralne m1 v1 m2 Przed zderzeniem m2 << m1 v2 = 0 m1 m2 Po zderzeniu Spowalnianie neutronów?

Zderzenie idealnie niesprężyste m1 m2 v1 Przed zderzeniem v12 Po zderzeniu

Wahadło balistyczne

Wahadło balistyczne

Wahadło balistyczne Stracona energia mechaniczna zamieniła się na ciepło powodując rozgrzanie pocisku i kloca.