Wykład Energia pola indukcji magnetycznej Prądu zmienne

Slides:



Advertisements
Podobne prezentacje
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
Advertisements

Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład Pole elektryczne i potencjał pochodzące od jednorodnie naładowanej nieprzewodzącej kuli W celu wyznaczenia natężenia posłużymy się prawem.
Wykład 9 7. Pojemność elektryczna
Wykład Gęstość energii pola elektrycznego
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 21 Mechanika płynów 9.1 Prawo Archimedesa
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Demo.
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład Magnetyczne własności materii
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
Siła Lorentza W przestrzeni istnieje pole magnetyczne o indukcji B. Na ładunek próbny q0 poruszający się w tej przestrzeni z prędkością v działa siła.
Wykonał : Mateusz Lipski 2010
Wykład II.
Wykład VIIIa ELEKTROMAGNETYZM
Wykład IV Pole magnetyczne.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Reinhard Kulessa1 Wykład Energia pola indukcji magnetycznej 18 Prądu zmienne 18.1 Impedancja obwodów prądu zmiennego 16.5 Zjawisko samoindukcji 18.2.
Wykład Magnetyczne własności materii
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład 25 Fale płaskie c.d. Trójwymiarowe równanie różniczkowe fali
Wykład Materia w polu elektrycznym cd. pol
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Zależność oporu metali od temperatury.
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Siła elektromotoryczna
Wykład Zjawisko indukcji elektromagnetycznej
Wykład Spin i orbitalny moment pędu
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład 20 Zmienne prądy.
FIZYKA dla studentów POLIGRAFII Indukcja i drgania elektromagnetyczne
FIZYKA dla studentów POLIGRAFII Indukcja i drgania elektromagnetyczne.
FIZYKA dla studentów POLIGRAFII Pole magnetyczne
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm
Wykład 23 Ruch drgający 10.1 Oscylator harmoniczny
„Co to jest indukcja elektrostatyczna – czyli dlaczego dioda świeci?”
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład 8 Pole magnetyczne
Fizyka Elektryczność i Magnetyzm
Transformator.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
GRUPA A Korzystając z prawa Coulomba oblicz natężenie pole elektrycznego w odległości R od nieskończonego pręta, naładowanego z gęstością liniową ładunku.
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Pole magnetyczne.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Zasada działania prądnicy
Trochę matematyki Przepływ cieczy nieściśliwej – zamrozimy ciecz w całej objętości z wyjątkiem wąskiego kanalika o stałym przekroju – kontur . Ciecz w.
Wykład Zjawisko indukcji elektromagnetycznej
Temat: Zjawisko indukcji elektromagnetycznej.
Indukcja elektromagnetyczna
O zjawiskach magnetycznych
ELEKTROSTATYKA.
Zapis prezentacji:

Wykład 21 17 Energia pola indukcji magnetycznej Prądu zmienne 16.2 Prądy indukcyjne, reguła Lenza c.d. 16.3 Prądy wirowe 16.4 Zjawisko indukcji wzajemnej 16.5 Zjawisko samoindukcji 17 Energia pola indukcji magnetycznej Prądu zmienne 18.1 Impedancja obwodów prądu zmiennego Reinhard Kulessa

Rozważmy następujący układ. Mamy dwa przewodniki połączone ruchomym prętem. Całość znajduje się w polu indukcji magnetycznej prostopadłym do płaszczyzny przewodników i pręta. Zwrot wektora indukcji jest zaznaczony na rysunku. Poruszamy prętem ze stałą prędkością w lewo. W czasie dt strumień zmienia się o B · dA=B · l· dx = B ·l · v0 · dt. B I F R v0 dA l dx Otrzymujemy więc zgodnie z prawem Faradaya siłę elektromotoryczną indukcji równą: V Reinhard Kulessa

Napięcie to jest przyłożone do oporu R, przez który płynie prąd indukcyjny Iind . Na oporze wydziela się ciepło Joule’a. Moc wydzielona w przewodniku, zgodnie z równaniem (9.23) jest równa: B I F R V v0 dA Ze względu na zasadę zachowania energii na jednostkę czasu musi zostać wykonana praca mechaniczna związana z przesunięciem pręta. Reinhard Kulessa

Ponieważ Pe = Pm , otrzymujemy więc: . Jest to znana nam już siła Biota – Savarta. Siła ta wynika więc z prawa indukcji Faradaya i zasady zachowania energii. Zgodnie z regułą Lenza siła ta sprzeciwia się zmianom strumienia pola magnetycznego. m W oparciu o regułę Lenza można zbudować silnik liniowy. Reinhard Kulessa

Równowaga sił ciężkości i B-S Siła elektromotoryczna indukcji Po włączeniu prądu, pręt będzie przesuwał się w lewo, a równocześnie zmienia się strumień indukcji magnetycznej. W prosty sposób można pokazać, że prędkość przesuwu pręta równocześnie unoszącego masę m jest równa: (16.5) Prawo Ohma. Równowaga sił ciężkości i B-S Siła elektromotoryczna indukcji Reinhard Kulessa

16.3 Prądy wirowe Załóżmy, że mamy pętlę z dobrego przewodnika, którą chcemy wysunąć z pola magnetycznego. N S Powstający przy wysuwaniu z pola pętli, prąd indukcyjny stara się zachować w niej stały strumień indukcji magnetycznej. Prowadzi to do tego, że linie sił pola magnetycznego są częściowo zabierane przez wysuwaną z pola pętlę. Obliczmy jaka siła jest potrzebna, aby usunąć z pola magnetycznego o natężeniu B, pętlę z prądem z prędkością v. Reinhard Kulessa

indukcyjny będzie miał natężenie: R F’ -F’ v F Płynący w pętli prąd indukcyjny będzie miał natężenie: Siła F, którą musimy działać w kierunku v wynosi: (16.6) Ruch pętli w polu indukcji magnetycznej doznaje proporcjonalnej do prędkości siły hamowania. Ruch płytki przewodzącej w polu indukcji jest źródłem prądów wirowych. Reinhard Kulessa

16.4 Zjawisko indukcji wzajemnej Rozważmy dwie zwojnice o różnych średnicach i różnej liczbie zwojów umieszczonych jedna w drugiej. 1 1’ 2 2’ l Pierwsza zwojnica posiada N1 zwojów i średnicę A1 A1 A2 Druga zwojnica posiada N2 zwojów i średnicę A2 Do zacisków 1 i 1’ łączymy źródło zasilania dające w zwojnicy prąd o natężeniu I1. Prąd I1 wytwarza w cewce pole indukcji magnetycznej równe B1 równe: Reinhard Kulessa

Zmiana natężenia prądu I1 – dI1/dt powoduje powstanie w cewce Zmiennego w czasie pola indukcji dB1/dt. To zaś powoduje w cewce 2 pojawienie się siły elektromotorycznej indukcji V2ind. Postępując w sposób analogiczny przyłączając źródło prądu do cewki 2, otrzymamy na siłę elektromotoryczną indukcji w cewce 1 wyrażenie: Reinhard Kulessa

Jednostką indukcji wzajemnej jest 1 Henry = [Wb/A=V·s·A-1] Widzimy, że w obydwu wyrażeniach na siłę elektromotoryczną indukcji występuje wspólny człon zależny jedynie o geometrii zwojnic i przenikalności magnetycznej ośrodka. Otrzymujemy bowiem: (16.7) Widzimy, że . Jednostką indukcji wzajemnej jest 1 Henry = [Wb/A=V·s·A-1] Reinhard Kulessa

16.6 Zjawisko samoindukcji Z dotychczasowej dyskusji można odnieść wrażenie, że siła elektromotoryczna indukcji powstaje tylko wtedy, gdy zmienny strumień indukcji magnetycznej pochodzi z zewnątrz. Tak jednak nie jest. Okazuje się bowiem, że siła elektromotoryczna indukcji powstaje również wtedy, gdy pętla, lub inny obwód z prądem sama jest przyczyną zmian strumienia indukcji. Rozważmy dowolną pętlę z prądem. A r dl I  Strumień indukcji magnetycznej M wytworzony przez prąd I płynący w pętli wynosi: Reinhard Kulessa

Równanie to możemy napisać w postaci . Współczynnik indukcji własnej pętli z prądem jest więc równy: . (16.8) Gdy zmienia się natężenie prądu w przewodniku indukuje się siłą elektromotoryczna indukcji: (16.9) . A). Policzmy współczynnik indukcji własnej dla cewki o długości l i liczbie zwojów N i przekroju o powierzchni A, przez którą płynie prąd o natężeniu I. Reinhard Kulessa

Liczyliśmy już dla takiej cewki pole indukcji magnetycznej. Mamy więc: I(t) B(t) V0ind(t) Liczyliśmy już dla takiej cewki pole indukcji magnetycznej. Mamy więc: . Współczynnik indukcji własnej cewki wynosi więc: (16.10) Reinhard Kulessa

B). Współczynnik indukcji własnej kabla koncentrycznego Policzmy sobie jako przykład indukcję własną kabla koncentrycznego. Tworzą go dwa współśrodkowe walce, w których antyrównolegle płynnie prąd o natężeniu I. Strefa zewnętrzna jest wolna od pola indukcji magnetycznej. Wokół cylindra wewnętrznego roztacza się pole indukcji B(r), jako zamknięte pierścienie, dla których: x r 2b 2a V(x0) V(x0+x) B(r) I Strumień indukcji magnetycznej przez zakreskowaną powierzchnię wynosi . Reinhard Kulessa

Zmiana strumienia indukcji magnetycznej w czasie wynosi więc: Mamy więc . Zmiana strumienia indukcji magnetycznej w czasie wynosi więc: . Współczynnik indukcji własnej kabla koncentrycznego wynosi więc: , (16.11) gdzie x jest długością kabla. Wraz z długością kabla zmienia się również różnica potencjału między wewnętrzna a zewnętrzną częścią kabla: . Reinhard Kulessa

Zjawisko indukcji własnej ma bardzo ważne znaczenie przy włączaniu i wyłączaniu obwodów t tzał twył L R U0 Reinhard Kulessa

17 Energia pola indukcji magnetycznej Załóżmy, że mamy szpulę, dla której opór jest równy zero. W takim razie, aby utrzymać w szpuli prąd o natężeniu I lub I+dI, nie trzeba włożyć żadnej pracy. Równocześnie przy przejściu z prądem od I do I+dI powstaje siła elektromotoryczna indukcji własnej VL, która sprzeciwia się zmianie natężenia prądu. I t I+dI t+dt Reinhard Kulessa

Aby wymusić zmianę natężenia prądu o dI, trzeba wykonać pracę: Wynika stąd, że aby zmienić prąd w szpuli od 0 do I trzeba wykonać pracę: (17.1) Równocześnie w szpuli powstaje pole indukcji magnetycznej Biorąc ze wzoru (16.10) wyrażenie na współczynnik samoindukcji takiej szpuli, uzyskamy następujące wyrażenie na pracę W: Reinhard Kulessa

, (17.2) bo . (l·A) =  jest objętością zajmowaną przez pole indukcji magnetycznej. Otrzymujemy więc na gęstość energii pola magnetycznego wyrażenie: (17.3) Rozważania dotyczące szpuli możemy uogólnić dla dowolnego pola, które jest jednorodne w objętości d. Pole w objętości d można sobie przedstawić jako pochodzące od maleńkiego solenoidu. Wobec tego równanie (17.3) obowiązuje dla każdego przypadku. Reinhard Kulessa

Prądy zmienne 18.1 Impedancja obwodów prądu zmiennego Przy omawianiu siły elektromotorycznej indukcji rozważaliśmy SEM indukcji dla obracającej się pętli z prądem (równanie (16.4)). , Gdzie jest amplitudą i przedstawia największą wartość SEM. Możemy użyć sinusoidalnie zmienną w czasie siłę elektromotoryczną jako źródło prądu. W dowolnym obwodzie, oprócz tej siły elektromotorycznej pojawi się siła elektromotoryczna indukcji własnej: Reinhard Kulessa

  Zgodnie z prawem Kirchoffa mamy R L Czyli, (18.1) Rozwiązania tego równania będziemy szukali w postaci: gdzie I0 i  są stałymi całkowania. Po wstawieniu przewidzianego rozwiązania do równania (18.1) i kilku przekształceniach otrzymujemy; Reinhard Kulessa

 (18.2) Na natężenie prądu otrzymamy następujące wyrażenie: (18.3) Dla obwodu z oporem i pojemnością uzyskamy następujące równania: R C  Reinhard Kulessa

Równanie, które mamy rozwiązać jest nastepujące: (18.4) I znów szukając rozwiązania takiego jak poprzednio, uzyskujemy: (18.5)

Natężenie prądu płynącego w obwodzie będzie miało następującą postać: . (18.6) Wyrażenia nazywamy oporem pozornym obwodu lub impedancją. Reinhard Kulessa