Wykład Równanie telegrafistów 20.4 Zjawisko naskórkowości.

Slides:



Advertisements
Podobne prezentacje
Wykład Temperatura termodynamiczna 6.4 Nierówność Clausiusa
Advertisements

Wykład Mikroskopowa interpretacja entropii
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Prawo Gaussa w postaci różniczkowej E
Wykład 9 7. Pojemność elektryczna
Wykład Gęstość energii pola elektrycznego
Wykład Przemiany gazu idealnego
Wykład Model przewodnictwa elektrycznego c.d
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 24 Ruch falowy 11.1 Fala jednowymiarowa
Wykład Drgania wymuszone oscylatora Przypadek rezonansu
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Wykład 19 Dynamika relatywistyczna
Wykład 12 8 Zastosowanie termodynamiki statystycznej
Wykład Równanie ciągłości Prawo Bernoulie’ego
Wykład 21 Mechanika płynów 9.1 Prawo Archimedesa
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Wykład Procesy transportu 12. Niskie temperatury
Wykład Efekt Dopplera Znaczenie ośrodka
Demo.
Wykład Równania Maxwella Fale elektromagnetyczne
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
FALE Równanie falowe w jednym wymiarze Fale harmoniczne proste
FIZYKA dla studentów POLIGRAFII Wykład 6
Rodzaje fal (przyjęto kierunek rozchodzenia się fali +0z)
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
Fale t t + Dt.
DIELEKTRYKI TADEUSZ HILCZER
Wykład VIIIa ELEKTROMAGNETYZM
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Reinhard Kulessa1 Wykład Energia pola indukcji magnetycznej 18 Prądu zmienne 18.1 Impedancja obwodów prądu zmiennego 16.5 Zjawisko samoindukcji 18.2.
Wykład Magnetyczne własności materii
Wykład 3 2. I zasada termodynamiki 2.1 Wstęp – rodzaje pracy
Wykład Ugięcie fal 11.9 Prędkość grupowa
Wykład 24 Fale elektromagnetyczne 20.1 Równanie falowe
Elektryczność i Magnetyzm II semestr r. akademickiego 2002/2003
Wykład 17 Ruch względny dla prędkości relatywistycznych
Wykład Impedancja obwodów prądu zmiennego c.d.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład 25 Fale płaskie c.d. Trójwymiarowe równanie różniczkowe fali
8.1 Wektor polaryzacji P W izolatorach w przeciwieństwie do przewodników ładunki nie mogą się swobodnie poruszać. Jednak w atomach i cząsteczkach może.
5.5 Mikro- i makrostany oraz prawdopodobieństwo termodynamiczne cd.
Wykład Mieszaniny gazowe
Wykład Materia w polu elektrycznym cd. pol
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
Wykład Opory ruchu -- Siły tarcia Ruch ciał w płynach
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Energia pola indukcji magnetycznej Prądu zmienne
Wykład Zjawisko indukcji elektromagnetycznej
Wykład Spin i orbitalny moment pędu
Wykład Równania Maxwella Fale elektromagnetyczne
Wykład 2 4. Ładunki elektryczne
Optoelectronics Podstawy fotoniki wykład 3 EM opis zjawisk świetlnych.
POTENCJAŁY Potencjały są to pomocnicze funkcje, skalarne lub wektorowe, służące do obliczania pól i gdy znane są wywołujące te pola ładunki.
WARUNKI BRZEGOWE. FALE NA GRANICY OŚRODKÓW
Wykład 23 Ruch drgający 10.1 Oscylator harmoniczny
Prąd elektryczny Wiadomości ogólne Gęstość prądu Prąd ciepła.
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
WYKŁAD 9 ODBICIE I ZAŁAMANIE ŚWIATŁA NA GRANICY DWÓCH OŚRODKÓW
WYKŁAD 7 ZESPOLONY WSPÓŁCZYNNIK ZAŁAMANIA
WYKŁAD 6 ODDZIAŁYWANIE ŚWIATŁA Z MATERIĄ. PLAN WYKŁADU  Pola elektryczne i magnetyczne w próżni i ośrodkach materialnych - równania Maxwella  Energia.
WYKŁAD 5 OPTYKA FALOWA OSCYLACJE I FALE
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Trochę matematyki Przepływ cieczy nieściśliwej – zamrozimy ciecz w całej objętości z wyjątkiem wąskiego kanalika o stałym przekroju – kontur . Ciecz w.
Podstawowe prawa optyki
Metody i efekty magnetooptyki
Zapis prezentacji:

Wykład 25 20.3.1 Równanie telegrafistów 20.4 Zjawisko naskórkowości. 20.5 Fale elektromagnetyczne w izolatorze. 20.6 Wektor Poyntinga 20.7 Dyspersja i absorbcja fal elektromagnetycznych Reinhard Kulessa

 20.3.1 Równanie telegrafistów Rozważmy układ dwóch przewodów podłączony do generatora wysokiej częstości. Układ taki nazywamy linią Lehera.  V V+dV A B D C I I+dI x x+dx  cos t Potencjał V i natężenie prądu I , czyli wektory E i B zmieniają się periodycznie w funkcji położenia. 1). Rozważmy zmianę ładunku na odcinku dx w czasie dt. Reinhard Kulessa

Z drugiej strony odcinek x tworzy kondensator o pojemności C*dx, czyli I (20.13) 2). Rozważmy zmianę indukcji na odcinku dx. Oznaczmy przez R* wartość oporu przypadającego na jednostkę długości przewodnika i zastosujmy prawo indukcji elektromagnetycznej dla kontury ABCD. Reinhard Kulessa

. Mamy więc: II I (20.14) Następnie biorąc z I równania pochodną /t a z równania II pochodną /x otrzymujemy po eleminacji drugich pochodnych mieszanych i skorzystaniu z równania I; (20.15a) Reinhard Kulessa

Jeśli do linii Lehera przyłożymy zmienne napięcie typu Veit, wtedy Następnie biorąc z I równania pochodną /x a z równania II pochodną /t otrzymujemy po eleminacji drugich pochodnych mieszanych; (20.15b) Otrzymaliśmy więc dwa identyczne równania na potencjał i natężenie prądu. Są to tzw. równania telegrafistów. Jeśli do linii Lehera przyłożymy zmienne napięcie typu Veit, wtedy Równanie (20.15a) przyjmie wtedy postać: Reinhard Kulessa

Mamy tu do rozważenia dwa przypadki: a). Można wtedy zaniedbać w równaniu (20.15a) człon z drugą pochodną cząstkowa po czasie i wtedy: (20.16) Równanie to ma charakter równania dyfuzyjnego. Jeśli znika L* linia Lehera da się przedstawić jako łańcuch R-C. Reinhard Kulessa

Można wtedy zaniedbać człon z pierwszą pochodną czasową, V/t. R o z m y c i e b). Można wtedy zaniedbać człon z pierwszą pochodną czasową, V/t. Dla idealnego przewodnika R* = 0. Wtedy; (20.17) Jest to równanie falowe, przy czym; Reinhard Kulessa

Gdzie vfaz jest prędkością fazową fali. (20.18) , Gdzie vfaz jest prędkością fazową fali. Ogólnym rozwiązaniem równania (20.15) są wyrażenia; . W wyrażeniu na zespolone natężenie prądu dodaliśmy dla bezpieczeństwa fazę. Stała k jest równa: Wstawiając odpowiednie pochodne do równania (20.13), otrzymamy: Reinhard Kulessa

Po podstawieniu tych wartości otrzymujemy, . (20.19) Ostatnie równanie ma postać prawa Ohma. Wyrażenie ma znaczenie impedancji. Impedancja ta jest rzeczywista, czyli natężenie i napięcie prądu są w fazie, co oznacza, że =0. Wyrażenie przedstawia sobą opór falowy. Reinhard Kulessa

20.4 Zjawisko naskórkowości. Wróćmy do równania (20.3) i zastanówmy się jakie człony w tym równaniu będą istotne w przypadku, gdy przewodnikiem będzie miedź. Wyrażenie /0 odpowiada częstości 8 1016 s-1. Odpowiada to długości fali w próżni =3.7 10-7 cm co odpowiada podczerwieni. Częstości, które możemy realizować technicznie, przy pomocy generatorów wysokich częstości są rzędu 1010 Hz. Wynika stąd, że /0>>, czyli od częstości naszego źródła prądu. Czyli w równaniu (20.4) dominować będzie człon z /t, tak, że . (20.20) Reinhard Kulessa

Załóżmy, że mamy następującą sytuację. j, E    z x Mamy więc: Po podstawieniu do wzoru (20.20) otrzymujemy: Reinhard Kulessa

W nawiasie kwadratowym ostatniego równania występuje wektor gęstości prądu j0(x). Gdzie 1/2 = /0c2.. Z równania tego widać, że j0(x) musi mieć postać; . Na wartość wektora gęstości prądu otrzymujemy więc: . (20.21) Płynący w przewodniku prąd zmienny nie wnika więc głęboko do wnętrza przewodnika. Dla miedzi (mm)=66.7/(Hz)1/2.. Otrzymujemy więc 9.5 mm dla prądu o częstości 50 Hz. Reinhard Kulessa

Głębokość penetracji fali do wnętrza przewodnika miedzianego pokazane jest na poniższym rysunku. Reinhard Kulessa

20.5 Fale elektromagnetyczne w izolatorze. W izolatorze wiadomo, że =0. Zgodnie z równaniem (20.3) znika w nim człon z /t. (20.22) . Rozpatrzmy falę płaską rozchodząca się w kierunku x: E(x,t), H(x,t). Załóżmy, że |E| = Ey, czyli ma kierunek prostopadły do założonego kierunku x. Pytanie jest następujące, czy istnieje wtedy wektor H i jak jest on ewentualnie skierowany.Równania falowe redukują się do: , Reinhard Kulessa

Pamiętamy, że w izolatorze  = 0, a również j = 0, wtedy I równanie oraz, . Pamiętamy, że w izolatorze  = 0, a również j = 0, wtedy I równanie Maxwella ma postać: . Założyliśmy, że wektor natężenia pola elektrycznego E ma tylko składową Ey, wobec tego Zgodnie z naszym założeniem musi znikać pierwszy człon po prawej stronie. Reinhard Kulessa

Dla wektora H pozostaje tylko składowa z-towa. Mamy więc, . Dla wektora H pozostaje tylko składowa z-towa. Widzimy z tego, że fala elektromagnetyczna jest falą poprzeczną. Wektory E i H zmieniają amplitudę w kierunku prostopadłym do kierunku prędkości fazowej vfaz, oraz są do siebie prostopadłe. H E vfaz Reinhard Kulessa

E0y Reinhard Kulessa

Fala elektromagnetyczna poruszając się w izolatorze transportuje 20.6 Wektor Poyntinga Fala elektromagnetyczna poruszając się w izolatorze transportuje energię. Ile energii transportuje fala przez powierzchnię A w czasie dt. Transportuje tej energii tyle, ile zawiera cylinder o objętości A·vfaz·dt. A Vfaz ·dt k H E Reinhard Kulessa

Wiadomo również, że odpowiednie gęstości energii są równe; Dla fali harmonicznej zachodzi następująca zależność: . Otrzymujemy więc, Reinhard Kulessa

Gęstość strumienia energii definiujemy jako Wynika stąd, że . Gęstość strumienia energii definiujemy jako Ze względu na to, że kierunek transportu energii jest prostopadły do wzajemnie prostopadłych wektorów E i H, możemy S wyrazić jako wektor. Reinhard Kulessa

Korzystając z równania (20.9) podającego wektor natężenia pola (20.23) Korzystając z równania (20.9) podającego wektor natężenia pola elektrycznego i wektor indukcji magnetycznej dla drgającego dipola, otrzymujemy na energię promieniowania dipola wartość; Rozkład kątowy energii emitowanej przez grgający dipol jest przedstawiony na następnym rysunku. Reinhard Kulessa

 Reinhard Kulessa

20.7 Dyspersja i absorbcja fal elektromagnetycznych Współczynnik załamanie światła jest zdefiniowany jako; Wiemy, że prędkość fazowa . Stąd znajdziemy związek pomiędzy optycznymi a elektrycznymi stałymi materiałowymi. (20.24) Dla izolatorów =1. Dyspersja światła w pryzmacie wskazuje na to, że współczynnik załamania światła n zależy od długości fali, czyli również (). Odpowiednie zależności można znaleźć w oparciu o model rozpraszania światła na atomach(elektronach) Reinhard Kulessa

Padająca fala o częstości  indukuje wtórny moment dipolowy w atomie. Moment ten uzyskuje dla pewnej częstości wartość maksymalną. W oparciu o takie rozważania otrzymujemy na współczynnik załamania wyrażenie; , (20.25) gdzie N oznacza liczbę atomów/cm3, e - ładunek elektronu, m – masę elektronu, 0 – częstość rezonansową, a Współczynnik załamania przyjmuje więc postać (20.26) . n0() przedstawia rzeczywisty współczynnik załamania odpowiedzialny za rozszczepienie światła, Reinhard Kulessa

() jest odpowiedzialny za tłumienie amplitudy fali. Prawo absorbcji fali elektromagnetycznej ma postać: . (20.27) Reinhard Kulessa