Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Na szczycie równi umieszczano obręcz, kulę i walec o tych samych promieniach i masach. Po puszczeniu ich razem staczają się one bez poślizgu. Które z tych.
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Wykład Opis ruchu planet
Dynamika bryły sztywnej
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Ruch układów złożonych
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
DYNAMIKA.
UKŁADY CZĄSTEK.
Kinematyka.
Układy cząstek.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Wykład 4 dr hab. Ewa Popko
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Prędkość kątowa Przyśpieszenie kątowe.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Wykład V Zderzenia.
Układ wielu punktów materialnych
Wykład III Zasady dynamiki.
BRYŁA SZTYWNA.
Wykład V 1. ZZP 2. Zderzenia.
Wykład V dr hab. Ewa Popko
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
Ruch układów złożonych środek masy bryła sztywna ruch obrotowy i toczenie.
Test 2 Poligrafia,
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 5
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład bez rysunków Ruch jednostajny po okręgu
Oddziaływania w przyrodzie
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
ANALIZA DYNAMICZNA MANIPULATORÓW JAKO MECHANIZMÓW PRZESTRZENNYCH
Z Wykład bez rysunków ri mi O X Y
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
PLAN WYKŁADÓW Podstawy kinematyki Ruch postępowy i obrotowy bryły
Pochodna funkcji jednej zmiennej. Pochodna wektora.
Dynamika ruchu płaskiego
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Ruch układów złożonych
Zasada zachowania pędu
Dynamika ruchu obrotowego
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
FIZYKA KLASA I F i Z Y k A.
Dynamika bryły sztywnej
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
Prawa ruchu ośrodków ciągłych
Symulacje komputerowe
Zapis prezentacji:

Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3 Wykład IV 1.Zasada zachowania pędu 2. Zderzenia 3. Moment siły i moment pędu. 4.Układ punktów materialnych. 5.Środek masy. 6. Dynamika bryły sztywnej 7. Twierdzenie Steinera 7. Zasada zachowania momentu pędu

III zasada dynamiki Newtona

III zasada dynamiki Newtona

Zasada zachowania pędu Jeśli układ cząstek jest izolowany, to całkowity pęd układu nie zmienia się bo

Zasada zachowania pędu Z III zasady dynamiki Newtona: F12 F21 1 2

Popęd Jeśli ciało oddziałuje z cząstką w pewnym przedziale czasowym (t1, t2), to całka Jest zwana popędem. Średnia siła w tym przedziale czasowym jest równa popędowi dzielonemu przez ten przedział czasowy:

Zależność między pędem a popędem W inercjalnym układzie odniesienia

Przykład Zmiana pędu: -wektorowo: -skalarnie: Piłeczka jest: -twarda ( np. golfowa),czas zderzenia Dt1 -miękka (tenisowa), czas zderzenia Dt2 FŚR jest ta sama, popęd taki sam ale Fmax jest większa dla twardej piłki, bo czas zderzenia jest krótszy. Pole pod wykresem tj. popęd

Zderzenia nieelastyczne elastyczne (maksimum strat energii kinetycznej) (nie ma strat energii kinetycznej) Zderzenia nie zmieniają całkowitego pędu układu cząstek.

Jeśli cząstki przed lub po zderzeniu mają te same prędkości to zderzenie jest nieelastyczne. Jeśli całkowita energia nie zmienia się to zderzenie jest elastyczne.

Zagadka. Jaki jest kąt miedzy kierunkami ruchu kul bilardowych pozderzeniu? Zasada zachow. pędu (1) 90° (2) j2 j1 v2f podstawiając v1f Zasada zachow. energii stąd v1i

Ruch ciał o zmiennej masie - rakieta mdv = -dmvex (1) Dzieląc (1) przez dt: F = mdv/dt = -vexdm/dt F nazywa się siłą ciągu. Jeśli dodatkowo działa jakaś siła zewnętrzna Przyśpieszenie rakiety: a = dv/dt = -(vex /m)dm/dt >0 Masa rakiety maleje w sposób ciągły w miarę zużywania się paliwa. Jeśli vex i dm/dt są stałe to przyśpieszenie rośnie aż do wyczerpania zapasu paliwa.  

Ruch ciał o zmiennej masie - rakieta Niech vex = const, i dla t = 0 m = m0 oraz v = v0. Z (1): dv = -vex dm/m Po scałkowaniu: Równanie Ciołkowskiego

Prędkość kątowa Przyśpieszenie kątowe

Moment siły

Moment siły t= r F sin  = r sin  F  = rpF Z definicji momentu siły: Ft Fr

Ruch obrotowy Ft = m at = m  r Załóżmy, że cząstka porusza się po okręgu. Niech na cząstkę działa siła F. Siła ta powoduje przyspieszenie styczne: at = r Z II zasady Newtona w kierunku stycznym: Ft = m at = m  r r Ft = m r 2  r ^  ^ F Ft at m r 

Ruch obrotowy rFt = mr2 ; niech Moment siły:  = rFt. Moment siły ma kierunek: + z jeśli powoduje ruch w kierunku przeciwnym do ruchu wskazówek zegara - z w przeciwnym przypadku. r ^  ^ F Ft at m r 

Moment pędu (cząstki) O

L =Iw

II zasada dynamiki Newtona ; Zasada zachowania momentu pędu (W inercjalnym układzie odniesienia) moment siły wypadkowej działającej na cząstkę jest równy szybkości zmian momentu pędu.

Układ wielu punktów materialnych BRYŁA SZTYWNA

Układ punktów materialnych Jeśli zdefiniujemy pewną wielkość fizyczną dla punktu materialnego, to wielkość całkowita odpowiadająca układowi punktów materialnych jest sumą tych wielkości dla wszystkich punktów wchodzących w skład układu. m1 m3 m2 p3 p2 p1 (całkowita) masa układu (całkowity) pęd układu (całkowita) energia kinetyczna układu

Środek masy Dla układu dyskretnego jest to punkt dla którego wektor położenia jest zdefiniowany następująco: z mi y r x gdzie M jest całkowitą masą. Dla bryły: Dla bryły symetrycznej środek masy=środkowi symetrii

II zasada dynamiki Newtona (dla układu cząstek) W inercjalnym układzie odniesienia całkowita zmiana pędu układu cząstek jest proporcjonalna do wypadkowej sił zewnętrznych działających na ten układ dP dt Fzewn P

II zasada dynamiki Newtona (dla układu cząstek) Fzewn W inercjalnym układzie odniesienia przyspieszenie środka masy układu cząstek jest proporcjonalne do wypadkowej sił zewnętrznych. acm

Całkowity pęd i środek masy Całkowity pęd układu cząstek jest związany z prędkością środka masy tego układu

Układ punktów materialnych zastępujemy punktem o masie równej masie całego układu, położonym w punkcie, w którym znajduje się środek masy. Jeśli

Ruch środka masy – przykład Układ izolowany: położenie środka masy nie zmienia się! Eksplodująca petarda.

Bryła sztywna Układ cząstek w którym odległości między cząstkami nie zmieniają się w czasie nazywa się bryłą sztywną. Dowolny ruch bryły sztywnej można traktować jako superpozycję ruchu translacyjnego (postępowego) i obrotowego. A

Ruch bryły sztywnej 1. Ruch postępowy środka masy 2. Obrót wokół środka masy Centre of mass End of hammer

przykład

II zasada dynamiki Newtona (VI) (moment pędu układu cząstek) r r r zewn M r å M + å M = å M = wewn , i zewn , i zewn , i i i i (W inercjalnym układzie odniesienia) moment siły wypadkowej działającej na układ cząstek jest równy szybkości zmian momentu pędu:

Moment pędu układu punktów sztywno zamocowanych wokół osi: Rozważmy układ punktów sztywno zamocowanych w płaszczyźnie x-y , obracający się wokół osi z. Całkowity moment pędu jest sumą momentów pędu każdej cząstki: (ri prostop. do vi ) v1 L jest w kierunku z. m2 j vi =  ri r2 r1 m1 i v2  r3 m3 v3 L =Iw Analog p = mv!!

Ustalona lub chwilowa oś obrotu (II ZDNewtona ) Przyspieszenie kątowe ciała obracającego się wokół ustalonej lub chwilowej osi obrotu jest proporcjonalne do składowej momentu sił zewnętrznych równoległej do osi obrotu.

II zasada dynamiki Newtona (dla ruchu obrotowego bryły sztywnej) Dla symetrycznych brył sztywnych przyspieszenie kątowe jest proporcjonalne do momentu wypadkowej sił zewnętrznych.

Moment bezwładności A Układ cząstek : r’ dm ri’ mi Ciało stałe

Twierdzenie Steinera I = Icm + MD2 D=L/2 M cm x L I Ism

Momenty bezwładności R R R

Moment bezwładności L L

Moment pędu i prędkość kątowa W ogólności, każda składowa całkowitego momentu pędu zależy od wszystkich składowych prędkości kątowej. r’

Moment pędu i prędkość kątowa lub inaczej: Składowe diagonalne – momenty bezwładności względem odpowiednich osi układu współrzędnych; Składowe nie diagonalne – dewiacyjne momenty bezwładności:

Osie główne Dla bryły sztywnej zawsze można znaleźć 3 wzajemnie prostopadłe osie obrotu dla których jest zawsze równoległe do Są to tzw. osie główne, zaś momenty bezwładności wokół tych osi nazywają się głównymi momentami bezwładności. Jeśli bryła sztywna jest symetryczna, to osie główne są jednocześnie osiami symetrii. np. sześcian, kula.

Twierdzenie o równow. pracy i energii kinet. (całkowita energia kinet Całkowita praca wykonana przez wszystkie siły (zewn. i wewn.) nad układem cząstek jest równa zmianie całkowitej energii kinet. układu T W lub

Całkowita energia kinetyczna bryły sztywnej Jeśli środek masy jest w punkcie A:

Praca i energia Dwa sznury są nawinięte wokół dwóch dysków o różnych promieniach ale o tym samym momencie bezwładności I. Do ich końców przyłożono taką samą siłę F która spowodowała ich odwiniecie o tę samą długość. Początkowo dyski są nieruchome ; założyć, że sznury nie ślizgają się po dyskach. Który dysk ma większą prędkość kątową po pociągnięciu sznura? w2 w1 (a) 1 (b) 2 (c) 1=2 F F

Praca i energia Praca jest ta sama! W = Fd Więc zmiana energii kinet. będzie też taka sama W = DK. w2 w1 Ponieważ I1 = I2 w1 = w2 F F d