Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.

Slides:



Advertisements
Podobne prezentacje
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Advertisements

Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Siła,praca,moc,energia Opracował:mgr Zenon Kubat Gimnazjum w Opatowie
PRACA , moc, energia.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Odkształcenia i zmiany prędkości
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
Dane INFORMACYJNE Nazwa szkoły:
DYNAMIKA.
UKŁADY CZĄSTEK.
Układy cząstek.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Wykład 4 dr hab. Ewa Popko
Prędkość kątowa Przyśpieszenie kątowe.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
1.Praca 2. Siły zachowawcze 3.Zasada zachowania energii
Układ wielu punktów materialnych
Wykład III Zasady dynamiki.
Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3
BRYŁA SZTYWNA.
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Siły Statyka. Warunki równowagi.
(5-6) Dynamika, grawitacja
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
RUCH HARMONICZNY F = - mw2Dx a = - w2Dx wT = 2 P
Fizyka-Dynamika klasa 2
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład bez rysunków Ruch jednostajny po okręgu
Projekt Program Operacyjny Kapitał Ludzki
Oddziaływania w przyrodzie
Z Wykład bez rysunków ri mi O X Y
Zasada zachowania energii mechanicznej.
RÓWNIA POCHYŁA PREZENTACJA.
Dynamika układu punktów materialnych
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Siły, zasady dynamiki Newtona
Przygotowanie do egzaminu gimnazjalnego
Dynamika.
Ruch w polu centralnym Siły centralne – siłę nazywamy centralną, gdy wszystkie kierunki Jej działania przecinają się w jednym punkcie – centrum siły a)
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat lekcji: Praca w polu grawitacyjnym
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
180.Jaką prędkość uzyskało spoczywające na poziomej powierzchni ciało o masie m=1kg pod działaniem poziomej siły F=10N po przebyciu odległości s=10m? Brak.
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Zasady dynamiki Newtona. Małgorzata Wirkowska
Dynamika punktu materialnego
Dynamika ruchu obrotowego
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
FIZYKA KLASA I F i Z Y k A.
Dynamika bryły sztywnej
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Prowadzący: dr Krzysztof Polko
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
5. Środek masy, Zderzenia 5.1. Środek masy
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
Prowadzący: dr Krzysztof Polko
Prawa ruchu ośrodków ciągłych
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU
Prawa ruchu ośrodków ciągłych
Ruch w polu centralnym Siły centralne – siłę nazywamy centralną, gdy wszystkie kierunki Jej działania przecinają się w jednym punkcie – centrum siły a)
Superpozycja natężeń pól grawitacyjnych
Zapis prezentacji:

Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła jest nazywana siłą zachowawczą. B Wszystkie inne siły nie są zachowawcze. A (Twierdzenie) Praca siły zachowawczej przemieszczającej cząstkę po torze zamkniętym jest równa zeru. Sily zachowawcze : grawitacji, sprężystości, elektrostatyczna.

Energia Potencjalna dU  - dW (lub U = -W ) U = Wrów Jeśli na cząstkę działa siła zachowawcza, to zmiana energii potencjalnej związana ze zmianą położenia cząstki dU jest zdefiniowana jako praca dW wykonana przez tę siłę. dU  - dW (lub U = -W ) Ta definicja określa energię potencjalną z dokładnością do stałej. Praca siły równoważącej siłę pola zachowawczego jest równa przyrostowi energii potencjalnej U = Wrów

Zasada zachowania energii Energia mechaniczna E  K + U Energia związana z ruchem Energia związana z położeniem Zasada zachowania energii Całkowita energia układu izolowanego jest zawsze stała.

Energia potencjalna w polu grawitacyjnym h m dr h W Ug  Ug = mgh

Energia mechaniczna w polu grawitacyjnym

Energia potencjalna w polu grawitacyjnym Gdzie ma być odniesienie? F dr r m M  R Energia potencjalna w polu grawitacyjnym cząstki o masie m, położonej w odległości r od cząstki o masie M: A jeśli odniesienie na powierzchni?

W układzie odnies. związanym z Ziemią: np. Oblicz VII tzn.prędkość ucieczki ciała z pola grawitacyjnego Ziemi. vsatelity vZiemia m M W układzie odnies. związanym z Ziemią: Zasada zachowania energii mechanicznej

Siła sprężystości

Energia potencjalna sprężystości

Problem 1a: ciało na sprężynie. Sprężynę naciągnięto o d względem położenia równowagi a następnie puszczono swobodnie. Oblicz prędkość masy m w punkcie równowagowym, pomijając tarcie. m pozycja równowagowa m naciągnięta sprężyna d m po puszczeniu v w pozycji równowagowej m vr

Wwyp = WS = K. Problem 1a) cd. Praca siły sprężystości na odcinku od x = d do x = 0 Zmiana energii kinetycznej masy m: Na podstawie I twierdzenia o równoważności pracy i energii kinetycznej Wwyp = WS = K. m d m vr i

Problem 1 b): uwzględniamy tarcie między bloczkiem a podłożem Całkowita praca jest sumą pracy siły sprężystości oraz siły tarcia: Wwyp= WS + Wf = K Wf = f.Δr = - mg d d vr m i f = mg r

II twierdzenie praca -energia Jeśli na cząstkę oprócz sił zachowawczych działają siły nie zachowawcze, to praca tych sił Wnc, jest równa całkowitej zmianie energii mechanicznej cząstki lub

Problem 1b) cd. – przy użyciu II twierdzenia o równoważności energii i pracy

Energia potencjalna i siła Dla sił zachowawczych prawdziwa jest relacja: z dr F y x bo i

np. Energia potencjalna w polu grawitacyjnym przy powierzchni Ziemi: W = - mg y x

np. energia potencjalna w polu grawitacyjnym: z r F y x

Równowaga Warunek równowagi: czyli : U(x) = Umin równowaga trwała U(x) = Umax równowaga chwiejna

Środek masy Jest to punkt dla którego wektor położenia jest zdefiniowany następująco: gdzie M jest całkowitą masą z dm y r x Dla układu dyskretnego

np. Trzy identyczne cząstki [0,0,1] [0,1,0] y [1,0,0] x

np. Cienki pręt jednorodny dx x To powinny być funkcje. x L z A co będzie jeśli pręt nie jest jednorodny?

twierdzenia dm r’ r x Środek masy obiektu jednorodnego musi leżeć w jego środku symetrii. Położenie środka masy dwóch ciał jest związane z położeniem środków mas każdego z ciał.

II zasada dynamiki Newtona (dla układu cząstek) W inercjalnym układzie odniesienia całkowita zmiana pędu układu cząstek jest proporcjonalna do wypadkowej sił zewnętrznych działających na ten układ dP dt Fzewn P

II zasada dynamiki Newtona (dla układu cząstek) Fzewn W inercjalnym układzie odniesienia przyspieszenie środka masy układu cząstek jest proporcjonalne do wypadkowej sił zewnętrznych. acm

Całkowity pęd i środek masy Całkowity pęd układu cząstek jest związany z prędkością środka masy tego układu

Ruch środka masy – przykład I Eksplodująca petarda.

Ruch środka masy – przykład II

Astronauci i lina Dwóch astronautów pozostających w spoczynku w kosmosie, połączyło się nieważką liną. W pewnym momencie zaczynają ciągnąć linę, każdy w swoją stronę. Gdzie się spotkają? M = 1.5m m

Astronauci i lina Oznaczmy prędkość środka masy VCM M = 1.5m m VCM pozostaje równe zeru, bo nie ma sił zewnętrznych. A więc CM nie porusza się! Zatem muszą się spotkać w CM. M = 1.5m m CM L x=0 x=L Znajdźmy środek masy CM: Niech początek układu współrzędnych x = 0 znajduje się w miejscu, w którym znajduje się astronauta po lewej stronie:

Całkowita energia potencjalna w polu grawitacyjnym (w pobliżu powierzchni) hcm U0 = 0