D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5

Slides:



Advertisements
Podobne prezentacje
Excel Narzędzia do analizy regresji
Advertisements

Modele oparte o dane przekrojowo-czasowe
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Analiza współzależności zjawisk
Równanie różniczkowe zupełne i równania do niego sprowadzalne
Jednorównaniowe modele zmienności
Metody ekonometryczne
Metody rozwiązywania układów równań liniowych
BUDOWA MODELU EKONOMETRYCZNEGO
Badania operacyjne. Wykład 2
Wykład no 11.
D. Ciołek EKONOMETRIA II – wykład 1
Metody ekonometryczne
Metody ekonometryczne
Metody ekonometryczne
Ekonometria wykladowca: dr Michał Karpuk
Wykład 6 Standardowy błąd średniej a odchylenie standardowe z próby
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Matematyka.
KINEMATYKA MANIPULATORÓW I ROBOTÓW
Elementy Rachunku Prawdopodobieństwa i Statystyki
Konstrukcja, estymacja parametrów
Wykład 11. Podstawy teoretyczne odwzorowań konforemnych
Testowanie hipotez statystycznych
Ekonometria szeregów czasowych
Ekonometria. Co wynika z podejścia stochastycznego?
AUTOMATYKA i ROBOTYKA (wykład 6)
Elementy Rachunku Prawdopodobieństwa i Statystyki
Obserwatory zredukowane
Irena Woroniecka EKONOMIA MENEDŻERSKA - dodatek do W2
Elementy Rachunku Prawdopodobieństwa i Statystyki
Prognozowanie z wykorzystaniem modeli ekonometrycznych
Modelowanie ekonometryczne
Finanse 2009/2010 dr Grzegorz Szafrański pokój B106 Termin konsultacji poniedziałek:
Elementy Rachunku Prawdopodobieństwa i Statystyki
Ostyganie sześcianu Współrzędne kartezjańskie – rozdzielenie zmiennych
Sterowanie – metody alokacji biegunów II
Ekonometria stosowana
Ekonometria stosowana
Ekonometryczne modele nieliniowe
Seminarium licencjackie Beata Kapuścińska
Wykład - Badania panelowe.
Ekonometria stosowana
D. Ciołek Analiza danych przekrojowo-czasowych – wykład 3
D. Ciołek Analiza szeregów przekrojowo-czasowych – wykład 2
D. Ciołek EKONOMETRIA – wykład 5
D. Ciołek EKONOMETRIA – wykład 6
D. Ciołek EKONOMETRIA – wykład 3
D. Ciołek EKONOMETRIA – wykład 2
D. Ciołek EKONOMETRIA – wykład 4
WIELORÓWNANIOWE MODELE EKONOMETRYCZNE
1 D. Ciołek Analiza danych przekrojowo-czasowych – wykład 7 Analiza danych przekrojowo-czasowych Wykład 7: Testowanie integracji dla danych panelowych.
Analiza portfeli dwu- oraz trzy-akcyjnych
Ekonometria Metody estymacji parametrów strukturalnych modelu i ich interpretacja dr hab. Mieczysław Kowerski.
D. Ciołek BADANIA OPERACYJNE – wykład 2
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Analiza portfeli dwu- oraz trzy-akcyjnych. Portfel dwóch akcji bez możliwości krótkiej sprzedaży W - wartość portfela   W = a P 1 + b P 2   P 1 -
Treść dzisiejszego wykładu l Klasyfikacja zmiennych modelu wielorównaniowego l Klasyfikacja modeli wielorównaniowych l Postać strukturalna i zredukowana.
Ekonometria WYKŁAD 3 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ekonometria stosowana Heteroskedastyczność składnika losowego Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Temat – 5 Modelowanie różniczkowe.
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Modele nieliniowe sprowadzane do liniowych
Treść dzisiejszego wykładu l Metoda Najmniejszych Kwadratów (MNK) l Współczynnik determinacji l Koincydencja l Kataliza l Współliniowość zmiennych.
Ekonometria WYKŁAD 7 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ekonometria stosowana
EKONOMETRIA W3 prof. UG, dr hab. Tadeusz W. Bołt
EKONOMETRIA Wykład 2 prof. UG, dr hab. Tadeusz W. Bołt
Jednorównaniowy model regresji liniowej
MNK – podejście algebraiczne
Zapis prezentacji:

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Analiza danych przekrojowo-czasowych Wykład 5: Dynamiczne modele panelowe. dr Dorota Ciołek Katedra Ekonometrii Wydział Zarządzania UG http://wzr.pl/dc dorota.ciolek@ug.edu.pl Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 1)Model w postaci pierwszych różnic (FD) Estymator do szacowania parametrów w modelu z efektami ustalonymi – alternatywa dla modelu FE. Założenia: takie jak w przypadku FE. Zapiszmy model panelowy z efektami ustalonymi dla dwóch kolejnych okresów dla i-tej jednostki: Odejmując równanie drugie od równania pierwszego otrzymamy: czyli model, w którym nie ma już efektów indywidualnych. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 1) Model w postaci pierwszych różnic cd. Oznacza to, że w tym przypadku dokonujemy następującej transformacji zmiennych w modelu: Przy spełnieniu założeń model taki może być oszacowany klasyczną MNK, co prowadzi do estymatora następujacej postaci: czyli: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 1) Model w postaci pierwszych różnic cd. Wartości efektów indywidualnych dla poszczególnych jednostek obliczamy za pomocą wzoru: Należy pamiętać, że postać estymatora macierzy wariancji i kowariancji parametrów, powinna być szacowana dla faktycznych zmiennych objaśniających w modelu z uwzględnieniem właściwej liczby stopni swobody, czyli obok liczby zmiennych objaśniających również N efektów indywidualnych. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 2) Metoda Zmiennych Instrumentalnych Ogólny model panelowy w zapisie macierzowym ma postać: Przypomnijmy, w jaki sposób wyprowadzamy estymator parametrów takiego modelu. Mnożymy lewostronnie obie strony modelu przez X’: Zapisujemy równanie w kategorii wartości oczekiwanych: Jeżeli spełnione jest założenie o niezależności zmiennych objaśniających od składnika losowego wówczas: (*) Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 2) Metoda Zmiennych Instrumentalnych Możemy wówczas zapisać, że: co po przekształceniu daje nam: Stąd estymator parametrów możemy zapisać jako: Jednakże, co z przypadkami, gdy założenie (*) nie jest spełnione? Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 2) Metoda Zmiennych Instrumentalnych Zbiór zmiennych objaśniających dzielimy na dwie części: 1) zmienne nieskorelowane ze składnikiem losowym, 2) zmienne skorelowane ze składnikiem losowym. Budujemy macierz instrumentów Z: - zmienne (1) wchodzą do macierzy w niezmienionej postaci, - zmienne (2) zastępujemy zmiennymi niezależnymi od składnika losowego, ale skorelowanymi z zastępowaną zmienną. W klasycznej Metodzie Zmiennych Instrumentalnych liczba instrumentów jest równa liczbie zmiennych objaśniających, czyli macierz Z ma taki sam wymiar jak macierz X. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 2) Metoda Zmiennych Instrumentalnych Mając macierz instrumentów, pierwotny model mnożymy obustronnie z lewej strony przez Z’: Czyli: Wszystkie zmienne wchodzące w skład macierzy Z są nieskorelowane ze składnikiem losowym zatem: Stąd estymator parametrów przyjmuje postać: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 2) Metoda Zmiennych Instrumentalnych Należy jednak pamiętać, że: efektywność MZI jest ograniczona ponieważ w estymacji wykorzystywane są zmienne inne niż pierwotne zmienne objaśniające. Efektywność jest tym większa im większa korelacja instrumentów ze zmiennymi instrumentowanymi. Stąd, jeżeli jest możliwość, to dla poszczególnych zmiennych objaśniających wykorzystuje się więcej niż jeden instrument. Przechodzimy wówczas do: Uogólnionej Metody zmiennych Instrumentalnych Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 3) Uogólniona MZI Zakładamy, że mamy więcej instrumentów niż zmiennych objaśniających: wymiar macierzy X ≠ wymiar macierzy Z Założyliśmy, że: zatem: Skoro średnia z próby jest oceną wartości oczekiwanej, to: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 3) Uogólniona MZI Przy powyższym założeniu, UMZI polega, na przykład, na minimalizacji następującego wyrażenia: gdzie WN jest symetryczną, kwadratową macierzą wag, o wymiarze równym liczbie instrumentów w macierzy Z. Macierz ta wskazuje, jakie wagi należy przypisać poszczególnym równaniom w układzie równań , czyli, które instrumenty są bardziej, a które mniej ważne. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 3) Uogólniona MZI Minimalizując QN pierwszą pochodną po β przyrównujemy do zera: co oznacza, że: Zakładając, że uzyskujemy estymator UMZI: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 3) Uogólniona MZI W jaki sposób dobierana jest macierz wag WN? Różne macierze wag prowadzą do estymatorów różnej postaci, ale przy spełnieniu wymaganych założeń wszystkie uzyskane estymatory są nieobciążone i zgodne. Optymalna macierz WN jest proporcjonalna do odwrotności macierzy wariancji i kowariancji momentów. W szczególnym przypadku, jeżeli przyjmiemy, że składnik losowy jest sferyczny, uzyskujemy optymalną postać WN : Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 3) Uogólniona MZI Podstawiając optymalną macierz wag do estymatora, uzyskujemy: Później zauważymy, że estymator ten, przyjmuje różną postać, w zależności od wybranej macierzy wag. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Załóżmy, że mamy panelowy model autoregresyjny z efektami indywidualnymi: Sprawdźmy, czy możliwe jest oszacowanie powyższego modelu za pomocą poznanych estymatorów: RE, FE i FD. a) Estymator RE Zauważmy, że zmienna yi,t-1 jest zmienną objaśnianą w równaniu modelu dla obserwacji z okresu t-1: Widać, że zmienna ta zależy od efektu indywidualnego i - - metoda RE nie może być wykorzystana. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe b) Estymator FE - within Przy założeniu, że w wektorze zmiennych objaśniających znajduje się jedynie wartość opóźnionej zmiennej objaśnianej, postać estymatora można zapisać jako: Podstawiając wzór modelu autoregresyjnego do licznika powyższego wzoru otrzymujemy: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Estymator byłby nieobciażony gdyby drugi czynnik był równy zero. Można jednak wykazać, że granica stochastyczna licznika równa jest: Oznacza to, że: Powyższe wyrażenie jest zbieżne do zera przy T dążącym do nieskończoności, czyli przy długich szeregach. Najczęściej, gdy szeregi są dość krótkie (nawet gdy T=10) estymator jest znacznie obciążony! Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe c) Estymator FD Zauważmy, że postać będąca podstawą do zastosowania tej metody w przypadku rozpatrywanego modelu autoregresyjnego jest następująca: Niestety, zmienna objaśniająca nie jest niezależna od składnika losowego. Fakt wystąpienia zależności między zmienną (zmiennymi) objaśniającymi a zmienną objaśnianą sugeruje możliwość zastosowania metody zmiennych instrumentalnych. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Modele dynamiczne szacowane są przy pomocy pewnej wersji UMZI – estymator UMM zaproponowany przez Arellano i Bonda (1991) Szacując najprostszy model autoregresyjny postaci: zapisujemy go w postaci pierwszych różnic: Szukamy instrumentu dla zmiennej Jeżeli składnik losowy nie wykazuje autokorelacji, to właściwym instrumentem w tym przypadku jest zmienna y i,t-2. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Zasadność wprowadzenia tego instrumentu zapiszmy w postaci konkretnego założenia, tzw. założenia identyfikującego: Aby podnieść efektywność estymatora, Arellano i Bond proponują wykorzystać wszystkie możliwe instrumenty. Dla kolejnych obserwacji w czasie mamy coraz to większą liczbę obserwacji z przeszłości, które mogą być wykorzystane jako instrumenty. Również zasadność wprowadzenia tych instrumentów należy zapisać w postaci konkretnych założeń, co do odpowiednich momentów, czyli założeń identyfikujących, które mogą posłużyć do zbudowania estymatora Uogólnionej Metody Momentów. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Załóżmy np. że dysponujemy panelem, w którym każdy szereg składa się z 6 obserwacji w czasie, czyli T=6. Możemy wykorzystać wówczas następujące instrumenty: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Załóżmy np. że dysponujemy panelem, w którym każdy szereg składa się z 6 obserwacji w czasie, czyli T=6. Możemy wykorzystać wówczas następujące instrumenty: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Ze wskazanych instrumentów budujemy macierz Z, która zostanie wykorzystana w UMZI. Dla i-tej jednostki w próbie macierz Zi ma postać: Każdy wiersz macierzy Z zawiera instrumenty odpowiednie kolejnym okresom. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe W kolejnych okresach dysponujemy coraz większą liczbą instrumentów. Liczba wszystkich możliwych do wykorzystania instrumentów równa jest: Do wcześniej nałożonych założeń dodajmy jeszcze warunek, że składnik zakłócający nie zależy od początkowej wartości zmiennej objaśnianej: dla i = 1, ..., N oraz t = 2, ..., T. Wektorem składników losowych dla i-tej jednostki w modelu jest: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Aby wyprowadzić estymatora UMZI zapiszmy model FD: czyli: Skoro zgodnie z założeniami: , możemy zapisać: . Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe W tym przypadku, zgodnie z UMZI, należy zminimalizować następującą formę kwadratową: Należy zróżniczkować to wyrażenie względem nieznanego parametru , a następnie przyrównać do zera, co w wyniku daje: Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe W zależności od przyjętej macierzy wag WN możliwe jest określenie wielu różnych estymatorów UMM opartych na powyższym wzorze, które będą zgodne dla dużej liczby N i skończonej liczby obserwacji T, ale różnić się będą pod względem asymptotycznej efektywności. W tym przypadku przyjmuje się macierz zaproponowaną przez Hansena (1982), zdefiniowana następująco: gdzie są resztami wyliczonymi dla dowolnego, zgodnego początkowego estymatora. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Oznacza to, że mamy do czynienia z dwustopniową UMM. Arellano i Bond (1991) zaproponowali, aby dla pierwszego stopnia estymatora UMM macierz wag była określona następująco: gdzie HD jest macierzą o wymiarach (T – 2) x (T – 2): Konstrukcja tej macierzy wynika z przyjętego założenia o braku skorelowania składników losowych uit w czasie, a co za tym idzie z faktu, że są generowane przez proces MA(1). Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Jeżeli założymy, że w modelu obok opóźnionej zmiennej endogenicznej występują jeszcze inne zmienne objaśniające: w estymacji UMM możemy wykorzystać dodatkowe instrumenty. Rozważyć można 3 możliwe rodzaje zmiennych należących do X. 1) Jeżeli zmienne xit należące do X są zmiennymi ściśle egzogenicznymi, to można sformułować T(T-2) dodatkowych warunków ortogonalności: dla t = 3, ..., T oraz , , Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe 1) Jeżeli zmienne xit należące do X są zmiennymi ściśle egzogenicznymi, to można sformułować T(T-2) dodatkowych warunków ortogonalności: dla t = 3, ..., T oraz , co oznacza, że poczynając od t = 3, dla każdego t wszystkie obserwacje na egzogenicznych zmiennych xit są dobrymi instrumentami dla równań w postaci pierwszych różnic. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe 2) Jeżeli xit są zmiennymi słabo egzogenicznymi, mamy wówczas następujących warunków identyfikujących, które możemy uwzględnić obok założeń dotyczących yt-1: , dla t = 3, ..., T oraz czyli dla każdego t poprzednie obserwacje na xit oraz obserwacja bieżąca będą dobrymi instrumentami pozwalającymi wyeliminować wpływ endogeniczności zmiennych objaśniających. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe 3) Zmienne należące do macierzy X mogą być również zmiennymi endogenicznymi. Wówczas wymagają zastąpienia odpowiednimi instrumentami, podobnie jak opóźniona zmienna objaśniająca. W takim przypadku dostępnych jest tylko warunków ortogonalności związanych ze zmiennymi objaśniającymi: dla t = 3, ..., T oraz , a zatem dla każdego t instrumentami są tylko poprzednie obserwacje na zmiennych endogenicznych. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Uwzględniając wyżej opisane warunki identyfikujące w modelu na pierwszych różnicach dla każdej i-tej jednostki możemy zapisać macierz instrumentów Zi (w celu uproszczenia zapisu przyjmijmy, że macierz X tworzy tylko jedna zmienna ): gdzie dla zmiennych egzogenicznych s = T, dla z góry ustalonych s = t – 1, natomiast dla endogenicznych s = t – 2. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Ponadto, jeżeli zmienne xit są egzogeniczne do macierzy Zi dołączone są kolumny obserwacji na pierwszych przyrostach tych zmiennych, które zgodnie z tradycyjną metodologią zmiennych instrumentalnych są instrumentami „dla samych siebie”. Copyright by Dorota Ciołek

D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 Wykład - Badania panelowe. D. Ciołek Analiza danych przekrojowo-czasowych – wykład 5 4) Dynamiczne Modele Panelowe Według Arellano i Bonda (1991) zgodnym estymatorem macierzy wariancji i kowariancji dla estymatorów parametrów panelowego modelu dynamicznego jest: Ponadto powyższy estymator jest odporny na występowanie autokorelacji i heteroscedastyczności składnika zakłócającego, ponieważ uwzględniona w nim została korekta Windmeijera (2000), która poza niespełnieniem założeń dotyczących zakłóceń losowych uwzględnia obciążenie wynikające z małej ilości obserwacji po czasie. Copyright by Dorota Ciołek