WYKŁAD 5. Skojarzenia – ciąg dalszy

Slides:



Advertisements
Podobne prezentacje
Niezawodności sieci telekomunikacyjnych
Advertisements

Wyobraźcie sobie, że przychodzicie do domu i mama
Sympleksy n=2.
Typy strukturalne Typ tablicowy.
Teoria Grafów.
DOMINOWANIE W GRAFACH Magdalena Lemańska.
Grafy spełniające nierówność Γ(G) < IR(G)
Zadania przygotowawcze na egzamin
ALGORYTMY GRAFOWE.
Grażyna Mirkowska PJWSTK 15 listopad 2000
Grafy inaczej, czyli inne modele grafów
Kolorowanie grafów Niech G = (V, E) będzie spójnym grafem nieskierowanym bez pętli. Kolorowaniem wierzchołków grafu nazywa się przypisanie wierzchołkom.
WYKŁAD 6. Kolorowanie krawędzi
Wykład 6 Najkrótsza ścieżka w grafie z jednym źródłem
Minimalne drzewa rozpinające
HARALD KAJZER ZST nr 2 im. M. Batko
Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. Wyodrębnij prawy i lewy łańcuch punktów,
ALGORYTMY I STRUKTURY DANYCH
Ciągi de Bruijna generowanie, własności
-skeletony w przestrzeniach R 2 i R 3 Mirosław Kowaluk Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 2. Kolorowanie wierzchołków
WYKŁAD 7. Spójność i rozpięte drzewa
WYKŁAD 1. Grafy są wokół nas. Pojęcia wstępne.
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf.
WYKŁAD 8. Siła spójności Wierzchołek v nazywamy wierzchołkiem cięcia grafu G, gdy podgraf G-v ma więcej składowych spójności niż G. Krawędź e nazywamy.
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
WYKŁAD 8. Siła spójności A,B – dowolne podzbiory V(G)
KOLOROWANIE MAP.
WYKŁAD 3. Kliki i zbiory niezależne
GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5.
WYKŁAD 4. Skojarzenia Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych konców). Skojarzenie M w G traktujemy jak podgraf G.
Analiza Matematyczna część 2
Rodzaje kątów Wiesława Przewuska.
Matematyka Dyskretna, Moce zbiorów G.Mirkowska, PJWSTK
12 grudnia 2001Matematyka Dyskretna, Elementy Kombinatoryki G.Mirkowska, PJWSTK 1 Wykład 11 Elementy Kombinatoryki.
Elementy Rachunku Prawdopodobieństwa c.d.
Elementy Kombinatoryki (c.d.)
Macierz incydencji Macierzą incydencji grafu skierowanego D = (V, A), gdzie V = {1, ..., n} oraz A = {a1, ..., am}, nazywamy macierz I(D) = [aij]i=1,...,n,
Algorytmy grafowe Reprezentacja w pamięci
Hipergrafy Hipergraf jest rozszerzeniem pojęcia grafu. Hipergraf różni się od grafu nieskierowanego tym, że każda hiperkrawędź może być incydentna do dowolnej.
ALGORYTMY I STRUKTURY DANYCH
WYKŁAD 7. Spójność i rozpięte drzewa Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja.
Zależności funkcyjne.
Przepływy w sieciach. Twierdzenie minimaksowe.
Algorytmy i struktury danych
I. Informacje podstawowe
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Krzysztof Kucab Rzeszów, 2012
Trójkąty.
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Technika optymalizacji
PODSTAWOWE WŁASNOŚCI PRZESTRZENI
Algorytm Dijkstry 1 Zbiory: T - zbiór wierzchołków
Wykład 16 Inne zagadnienia z prostej regresji liniowej.
Algorytmy i Struktury Danych
KNW- Wykład 3 Powtórzenie. PROGRAM WYKŁADU NR 3 Przykładowe zadania z logiki Modele możliwych światów.
Kąt nachylenia ściany bocznej do płaszczyzny podstawy w ostrosłupie prawidłowym trójkątnym Opracował: Jerzy Gawin.
PLANARNOŚĆ i KOLOROWANIE MAP. Problem Jaka jest minimalna liczba kolorów, za pomocą których można pokolorować obszary województw na mapie Polski tak,
Drogi i cykle Eulera w grafach nieskierowanych
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
GRA CHOMP. Czym jest chomp? Jest to gra dla dwóch osób, rozgrywana na prostokątnej tablicy, zwanej „tabliczką czekolady”
NP-zupełność Problemy: rozwiązywalne w czasie wielomianowym - O(nk)
WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia.
Autor: Michał Salewski
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów
Zagadnienia transportowe Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Algorytmy i struktury danych
Obwody elektryczne wykład z 14.12
ALGORYTMY I STRUKTURY DANYCH
Zapis prezentacji:

WYKŁAD 5. Skojarzenia – ciąg dalszy Skojarzenie w grafie G to niezależny zbiór krawędzi (rozłączne, bez wspólnych końców). α’(G) – moc największego skojarzenia w G. Skojarzenie M w grafie G nazywamy doskonałym, gdy |M|=|V(G)|/2.

Tw. Tutte’a Niech q(G) będzie liczbą nieparzystych składowych grafu G. Tutte (1947) G ma skojarzenie doskonałe wgdy zachodzi warunek Tutte’a:

Pokrycia wierzchołkowe Podzbiór U zbioru V(G) nazywamy pokryciem wierzchołkowym (krawędzi), jeśli każda krawędź grafu G ma przynajmniej jeden koniec w U. Moc najmniejszego pokrycia - β(G). Trywialnie,

Skojarzenia w grafach 2-dzielnych – tw. Königa König (1931) Dla grafów dwudzielnych α’(G)= β(G).

Warunek (konieczny) Halla na istnienie skojarzenia zawierającego (nasycającego) zbiór A

Tw. Halla Tw. Halla (1935) Dwudzielny graf G o dwupodziale (A,B) posiada skojarzenie nasycające A wgdy zachodzi warunek Halla:

1. dowód Tw. Halla U – minimalne pokrycie E(G) Jeśli G nie ma skojarzenia nasycającego A, to z Tw. Königa: |U|= β(G) = α’(G )<|A| Nie ma krawędzi miedzy A-U i B-U. Zatem i warunek Halla nie zachodzi dla S=A-U

Ilustracja 1. dowodu Tw. Halla B A U

2. dowód Tw. Halla Indukcja względem |A|; prawda dla |A|=1. Niech |A|>1 i załóżmy prawdziwość dla <|A|. Dwa przypadki I. Warunek Halla zachodzi z nadmiarem, tzn. Usuńmy końce dowolnej krawędzi ab: G’=G-{a,b} G’ wciąż spełnia warunek Halla i z założenia ind. ma skojarzenie nasycające A-{a}, które wraz z krawędzią ab tworzy skojarzenie nasycające A.

2. dowód Tw. Halla –Przypadek II: Z założenia ind. podgraf G’ indukowany w G przez S’ i N(S’) ma skojarzenie nas. S’. Ale podgraf G’’=G-V(G’) też spełnia warunek Halla i z zał. ind. ma skojarzenie nas. A-S’. Rzeczywiście, gdyby istniał podzbiór S’’ w A-S’, dla którego |N(S’’)|<|S’’|, to -- sprzeczność

Ilustracja S’ S’’ G’’ N(S’’) N(S’)

3. dowód Tw. Halla Prosty wniosek z Tw. Tutte’a (do samodzielnego zastanowienia się)

Tw.Gallai’a Przypomnijmy: α(G), α’(G), β(G). Podzbiór F zbioru E(G) nazywamy pokryciem krawędziowym (wierzchołków), jeśli każdy wierzchołek jest końcem przynajmniej jednej krawędzi z F. β’(G) – moc minimalnego pokrycia Tw. (Gallai ,1959) Jeśli G nie ma wierzchołków izolowanych, to α’(G) + β’(G) =|V(G)|.

Ilustracja Tw. Gallai’a 3+6=9

Dowód Tw. Gallai’a Niech M będzie skojarzeniem, |M|= α’ . U=V(G)-V(M) jest zbiorem niezależnym. Dla każdego u w U, weźmy krawędź o końcu w u. Te krawędzie wraz z M tworzą pokrycie. Zatem

Ilustracja U M

Dowód Tw. Gallai’a – c.d. Niech L będzie pokryciem, |L|= β’. Niech M będzie największym skojarzeniem w H=G[L]=(V(G),L), a U=V(G)-V(M). U jest zbiorem niezależnym w H, więc a stąd

Ilustracja

Tw. dualne do Tw. Königa Łatwo pokazać, że α(G) + β(G) =|V(G)| dla każdego grafu G (ćwiczenia). Wniosek. Dla każdego grafu dwudzielnego bez wierzchołków izolowanych α(G) = β’(G). Dowód: Z tw. Gallai’a i powyższego ćwiczenia α’(G) + β’(G) =α(G) + β(G), a na podstawie Tw. Königa, α’(G) = β(G) . 

Skojarzenia ułamkowe Skojarzenie ułamkowe to funkcja w:E  [0,1] taka, że Wtedy suma wszystkich wag w(e) nie przekracza n/2. Jeśli suma wag jest równa n/2, to mówimy, że w jest doskonałym skojarzeniem ułamkowym.

Ilustracja 0.4 0.6 0.3 0.1 0.5 0.2 0.5 1 Suma = 2.1 Suma = 2.5