Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.

Slides:



Advertisements
Podobne prezentacje
Na szczycie równi umieszczano obręcz, kulę i walec o tych samych promieniach i masach. Po puszczeniu ich razem staczają się one bez poślizgu. Które z tych.
Advertisements

Dynamika bryły sztywnej
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Kinematyka punktu materialnego
Podstawy termodynamiki Gaz doskonały
PRACA , moc, energia.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Ruch układów złożonych
Dynamika Siła – oddziaływanie, powodujące ruch ciała.
Dane INFORMACYJNE Nazwa szkoły:
UKŁADY CZĄSTEK.
Kinematyka.
Układy cząstek.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Wykład II.
Wykład 4 dr hab. Ewa Popko
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Prędkość kątowa Przyśpieszenie kątowe.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
1.Praca 2. Siły zachowawcze 3.Zasada zachowania energii
Wykład IV Pole magnetyczne.
Układ wielu punktów materialnych
Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3
BRYŁA SZTYWNA.
Wykład V 1. ZZP 2. Zderzenia.
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Ruch układów złożonych środek masy bryła sztywna ruch obrotowy i toczenie.
Test 2 Poligrafia,
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 5
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
Opracowała Diana Iwańska
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład bez rysunków Ruch jednostajny po okręgu
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
Z Wykład bez rysunków ri mi O X Y
Zasada zachowania energii mechanicznej.
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
dr hab. inż. Monika Lewandowska
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Przygotowanie do egzaminu gimnazjalnego
Dynamika.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
dr inż. Monika Lewandowska
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
Dynamika ruchu płaskiego
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
180.Jaką prędkość uzyskało spoczywające na poziomej powierzchni ciało o masie m=1kg pod działaniem poziomej siły F=10N po przebyciu odległości s=10m? Brak.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Ruch układów złożonych
Dynamika punktu materialnego
Dynamika ruchu obrotowego
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych
FIZYKA KLASA I F i Z Y k A.
Dynamika bryły sztywnej
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Prowadzący: dr Krzysztof Polko
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU
Zapis prezentacji:

Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa zachowania tych całek ruchu dają często możliwość szybszych rozwiązań. Prawa zachowania – niezależne od własności toru i działających sił (nieznane siły). W układzie odosobnionym odpowiednia wielkość fizyczna opisująca zachowanie się cząstek nie ulega zmianie podczas ich ruchu. 4. Dynamika

Zasada zachowania energii 1. Praca wykonana nad ciałem przez dowolną siłę zewnętrzną jest równa zmianie jego energii kinetycznej (ciało musi być swobodne): Jeżeli ruch zaczyna się na wysokości h, to energia całkowita E=const 4. Dynamika

Zasady zachowania Siła zachowawcza - jeżeli praca wykonana przez siłę nie zależy od drogi Praca wykonana na drodze zamkniętej równa jest 0. \ Praca wykonana nad cząstką znajdującą się w polu sił zmienia się w jej energię potencjalną Jeżeli siły są zachowawcze: 4. Dynamika

Zasady zachowania Moc P – szybkość wykonania jakiejś pracy, iloczyn skalarny siły działającej na ciało i jego prędkości Przykład 1 Klocek zsuwa się z wysokości h po równi pochyłej. Jaką drogę przebędzie klocek na płaszczyźnie u podstawy równi do chwili zatrzymania, jeżeli współczynnik tarcia na całej drodze wynosi m? 4. Dynamika

Zasada zachowania energii 4. Dynamika

Zasada zachowania pędu Przy zderzeniu dwóch ciał: De – energia wewnętrznego wzbudzenia ciał Ruch ciał o zmiennej masie, wzór Ciołkowskiego: u – prędkość strumienia gazów względem rakiety 4. Dynamika

Zasady zachowania Jeżeli nie działają siły zewnętrzne prędkość środka masy jest stała Pod działaniem sił zewnętrznych środek masy układu porusza się tak, jakby w nim skupiona była cała masa układu 4. Dynamika

Zasada zachowania pędu Przykład 2 Wózek o masie m poruszający się z prędkością v zderza się ze spoczywającym wózkiem o masie M=2m. Po zderzeniu wózki poruszają się razem. Obliczyć ich prędkości. Jak część początkowej energii kinetycznej została zamieniona na ciepło? 4. Dynamika

Zasada zachowania momentu pędu Moment pędu punktu materialnego – miara ilości ruchu w ruchu krzywoliniowym. Szybkość zmiany momentu pędu równa jest momentowi siły. Moment pędu układu jest zachowany, gdy na układ nie działa żaden zewnętrzny moment siły 4. Dynamika

Zasada zachowania momentu pędu Przykład 3 Na brzegu poziomego stolika, o masie m1=100 kg i o promieniu r1=1m wirującego z częstotliwością f=0.5 Hz dookoła pionowej osi przechodzącej przez jego środek stoi człowiek o masie m2=60 kg. Z jaką prędkością kątową będzie się obracał stolik, gdy człowiek przejdzie na jego środek? Jak zmieni się energia kinetyczna układu stolik-człowiek? 4. Dynamika

Zasady zachowania a symetria Zasady zachowania danej wielkości wiążą się ściśle z niezmienniczością tej wielkości względem transformacji, odzwierciedlających własności symetrii przestrzeni i czasu Przestrzeń jednorodna i izotropowa, czas jednorodny Zasada zachowania energii – jednorodność czasu, niezmienniczość względem przesunięcia w czasie, Zasada zachowania pędu – jednorodność przestrzeni, niezmienni- czość względem przesunięcia w przestrzeni, Zasada zachowania momentu pędu – izotropowość przestrzeni, Niezmienniczość względem obrotów w przestrzeni. Każdemu rodzajowi symetrii odpowiada jakaś zasada 4. Dynamika

Dynamika ruchu obrotowego Bryła sztywna – zbiór punktów nie zmieniających swoich wzajemnych odległości. Bryła sztywna porusza się jako całość nie zmieniając kształtu i objętości Ilość stopni swobody - 6 ruch postępowy - gdy wektory prędkości wszystkich punktów bryły jednakowe; ruch obrotowy – wszystkie punkty bryły poruszają się po okręgach, których środki leżą na osi obrotu 4. Dynamika

Zasady dynamiki dla ruchu obrotowego Iloczyn momentu bezwładności i przyspieszenia kątowego bryły jest równy momentowi sił zewnętrznych działających na ciało – II zasada Zmiana momentu pędu bryły w czasie dt jest równa momentowi siły działającej na nią Bryła sztywna, na którą nie działa żaden moment siły (N=0) pozostaje w spoczynku lub obraca się ze stałą prędkością kątową – I zasada 4. Dynamika

Zasady dynamiki ruchu obrotowego Suma momentów sił działających na bryłę w układzie odosobnionym równa jest zero – III zasada. Równowaga statyczna: równowaga trwała Twierdzenie Steinera równowaga obojętna Energia kinetyczna bryły równowaga chwiejna 4. Dynamika