Druga zasada termodynamiki

Slides:



Advertisements
Podobne prezentacje
DRUGA ZASADA TERMODYNAMIKI
Advertisements

Entropia Zależność.
Silnik spalinowy czterosuwowy; cykl Otta Idealny i realny cykl Otta
I zasada termodynamiki Mechanizmy przekazywania ciepła
Rozprężanie swobodne gazu doskonałego
System dwufazowy woda – para wodna
I zasada termodynamiki; masa kontrolna i entalpia
Silniki cieplne; alternatywne sformułowanie II zasady termodynamiki
Energia wewnętrzna jako funkcja stanu
Cykl Rankine’a dla siłowni parowej
Wykład Temperatura termodynamiczna 6.4 Nierówność Clausiusa
Wykład Mikroskopowa interpretacja entropii
Wykład Mikroskopowa interpretacja ciepła i pracy Entropia
TERMODYNAMIKA CHEMICZNA
procesy odwracalne i nieodwracalne
TERMODYNAMIKA CHEMICZNA
Wykład Fizyka statystyczna. Dyfuzja.
Podstawy termodynamiki
Zależność entropii od temperatury
Kinetyczna Teoria Gazów Termodynamika
Cykl przemian termodynamicznych
Silnik cieplny > TII Równanie bilansu energii:
Silnik Carnota.
I ZASADA TERMODYNAMIKI
Standardowa entalpia z entalpii tworzenia
Termodynamics Heat, work and energy.
Wzorce do naśladowania
TERMODYNAMIKA.
TERMOCHEMIA.
TERMOCHEMIA.
Wykład VIII Termodynamika
Oddziaływanie z otoczeniem jest opisane przez działanie sił.
Wykład 14 Termodynamika cd..
Termodynamika cd. Wykład 2. Praca w procesie izotermicznego rozprężania gazu doskonałego V Izotermiczne rozprężanie gazu Stan 1 Stan 2 P Idealna izoterma.
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Układy i procesy termodynamiczne
FIZYKA dla studentów POLIGRAFII Przejścia fazowe Zjawiska transportu
Kinetyczno-molekularna teoria budowy gazu
Praca w przemianie izotermicznej
Wzorce do naśladowania. nowe wiązanie + Czy może być produkcja bezodpadowa? Przykład dotyczący przemian chemicznych. Taką reakcją może być np. wytwarzanie.
Elementy kinetycznej teorii gazów i termodynamiki
Pierwsza i druga zasada termodynamiki
KLIMATRONIK BIS Klimatyzacja. Wentylacja. Chłodnictwo
Dane INFORMACYJNE (do uzupełnienia)
Podstawy Biotermodynamiki
PULSACJE GWIAZDOWE Jadwiga Daszyńska-Daszkiewicz, semestr zimowy 2009/
T48 Sprężarki wirowe..
Chemia wykład 2 Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia:
II zasad termodynamiki
TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel
Kinetyczna teoria gazów
Przygotowanie do egzaminu gimnazjalnego
1 zasada termodynamiki.
Są cztery Prawa termodynamiki
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Inne cykle termodynamiczne
Pierwsza zasada termodynamiki
Entropia gazu doskonałego
Przygotowała; Alicja Kiołbasa
Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF)
Gaz rzeczywisty ?. p [Atm]pV [Atm·l] l azotu w warunkach normalnych, T = 273 K = const. 1 Atm = 1.01·10.
DYFUZJA.
Druga zasada termodynamiki praca ciepło – T = const? ciepło praca – T = const? Druga zasada termodynamiki stwierdza, że nie możemy zamienić ciepła na pracę.
Termodynamiczna skala temperatur Stosunek temperatur dowolnych zbiorników ciepła można wyznaczyć mierząc przenoszenie ciepła podczas jednego cyklu Carnota.
TERMODYNAMIKA.
9. Termodynamika 9.1. Temperatura
Bomba atomowa, energetyka jądrowa.
Równowaga cieczy i pary nasyconej
Elektroenergetyka w Polsce, sytuacja sektora w roku 2017,2018
Zapis prezentacji:

Druga zasada termodynamiki

Zjawiska odwracalne i nieodwracalne Zjawiskami odwracalnymi nazywamy takie zjawiska, których bieg można w każdej chwili odwrócić, mogą się zatem odbywać w jednym lub w drugim kierunku. Przykładem zjawiska odwracalnego jest bardzo powolne sprężanie adiabatyczne gazu lub sprężanie izotermiczne. Zjawiska w których występują rozpędzone części układu lub pojawia się inny bodziec wywołujący zjawisko w określonym kierunku nazywamy zjawiskami nieodwracalnymi.

Wszystkie przemiany zachodzące w przyrodzie przebiegają w określonym kierunku... Wymiana energii na sposób ciepła. TA TB < TA Q TB = TA W wyniku wymiany energii na sposób ciepła podukłady A i B dążą do stanu równowagi termicznej, w którym mają taką samą temperaturę.

Wszystkie przemiany zachodzące w przyrodzie przebiegają w określonym kierunku... Dyfuzja w roztworach W wyniku dyfuzji następuje ujednolicenie składu roztworu - powstaje faza wieloskładnikowa wewnętrznie zrównoważona.

Wszystkie przemiany zachodzące w przyrodzie przebiegają w określonym kierunku...

Spontaniczny przebieg jakiegokolwiek procesu pociąga za sobą trwałe - nieodwracalne zmiany w przyrodzie; z tego powodu procesy przebiegające rzeczywiście nazywa się nieodwracalnymi. Przemiana odwracalna są hipotetycznymi procesami przebiegającymi nieskończenie powoli przy zerowych wartościach bodźców termodynamicznych (temperatury).

Silnik cieplny – Cykl Carnota Schemat silnika cieplnego. Dwie czarne strzałki na pętli w środkowej części rysunku wskazują, że substancja robocza jest poddana przemianie cyklicznej. Ze zbiornika o wysokiej temperaturze TG do substancji roboczej przepływa energia w postaci ciepła QG. Substancja robocza oddaje do zbiornika o niskiej temperaturze TZ energię w postaci ciepła QZ. Silnik wykonuje nad pewnym elementem otoczenia pracę W.

Cykl Carnota WAB P V C B A D WDA WBC QAB WCD Sadi Carnota (1824 roku) QCD

A Qg B D C Qz Wypadkowa praca W wykonana przez układ w czasie pełnego cyklu jest przedstawiona przez powierzchnię zawartą wewnątrz krzywej ABCD.

Sprawnością silnika cieplnego nazywamy stosunek pracy wykonanej przez silnik podczas jednego cyklu do ciepła pobranego ze zbiornika o wyższej temperaturze, czyli lub Przykład Jeżeli zbiornikami ciepła dla silnika Carnota są naczynia z wrzącą oraz zamarzającą wodą, to sprawność jest równa

Odwrotny cykl Carnota Ponieważ rozprężanie izotermiczne i adiabatyczne są procesami odwracalnymi, więc cykl Carnota może przebiegać w odwrotnym kierunku. Taki cykl nazywamy odwrotnym cyklem Carnota. Ponieważ układ oddaje więcej ciepła niż odbiera z otoczenia to praca nad układem musi być wykonana przez czynnik zewnętrzny.

Wykorzystanie odwrotnego cyklu Carnota Chłodziarki i klimatyzatory Dla chłodziarki (klimatyzatora) współ. sprawności Bo nas interesuje ile ciepła pobraliśmy z chłodnicy ! Dla typowego urządzenia mamy: Tz=260 K Tg=310 K stąd wydajność : ε~5 Innymi słowy na około 5 J pobranego ciepła zużywamy 1 J pracy.

Wykorzystanie odwrotnego cyklu Carnota Pompy cieplne

1. Nie można zbudować perpetuum mobile drugiego rodzaju. Druga zasada termodynamiki Istnieje kilka sformułowań drugiej zasady termodynamiki 1. Nie można zbudować perpetuum mobile drugiego rodzaju. Sformułowanie Kelvina - Plancka Perpetuum mobile drugiego rodzaju to silnik, który pobiera ciepło tylko z jednego zbiornika i w całości zamienia je na pracę, bez zwracania pewnej ilości ciepła do innego zbiornika o niższej temperaturze. Źródło ciepła ustawicznie oziębiałoby się w miarę dostarczania otoczeniu energii mechanicznej.

Perpetuum mobile pierwszego rodzaju to hipotetyczna maszyna, która wytwarza więcej energii, niż sama zużywa, tj. wykonuje pracę bez pobierania energii z zewnątrz lub praca wykonywana przez nią jest większa od pobieranej energii. Miałby to być samonapędzający się mechanizm Perpetuum mobile pierwszego rodzaju jest sprzeczne z z I zasadą termodynamiki,

Sformułowanie Clausiusa Niemożliwe jest skonstruowanie urządzenia działającego w obiegu zamkniętym, którego działanie polegałoby wyłącznie na przepływie ciepła z ciała zimniejszego do cieplejszego. Działająca chłodziarka musi zawierać element taki jak zasilana z zewnątrz sprężarka, który wykonuje pracę na czynniku roboczym.

2. Gdy dwa ciała o różnych temperaturach znajdą się w kontakcie termicznym, wówczas ciepło będzie przepływało z ciała cieplejszego do chłodniejszego. T1 temperatura w pręcie T2 T1 > T2 T1 T2 ciepło

3. Żadna cykliczna maszyna cieplna pracująca miedzy temperaturami: górną Tg i dolną Tz nie może mieć sprawności większej niż sprawność cyklu Carnota 4. W układzie zamkniętym entropia nie może maleć. Entropia jest miarą nieuporządkowania układu cząstek. Im większy jest stan nieporządku położeń i prędkości w układzie tym większe prawdopodobieństwo, że układ będzie w tym szczególnym stanie. Przykład sytuacji gdy nieuporządkowanie rośnie bo tracimy część zdolności do klasyfikacji cząstek: Rozprężanie swobodne - natychmiast po otwarciu kurka tracimy kontrolę nad otoczeniem.

Termodynamiczna skala temperatur