PWSW Mechatronika Wykład 7 Matlab cd
Przydatne polecenia help - pomoc globalna help elfun - pomoc – spis funkcji elementarnych help rem - pomoc na temat wybranej funkcji (tu: rem) format long - wyświetlanie liczb z 15-ma miejscami dziesiętnymi format short - liczby wyświetlane z 4-ma miejscami dziesiętnymi clc - czyszczenie ekranu clear zmienna - usunięcie zmiennej z obszaru roboczego (Workspace) clear - usunięcie wszystkich zmiennych z obszaru roboczego
clc format long x=pi N=5 y= round(x*10^N)/10^N format short Algorytm zaokrąglania z dokładnością do N miejsc dziesiętnych clc format long x=pi N=5 y= round(x*10^N)/10^N format short
Generator losowy rand Bezargumentowa funkcja! Losuje liczbę rzeczywistą z przedziału (0, 1) x=rand Zmiana przedziału losowania: x=round(100*rand-50) Losowanie liczby całkowitej z przedziału (-50, 50)
Interakcja z użytkownikiem (instrukcja wejścia) zmienna = input('tekst zachęty'); Działanie: skrypt się zatrzymuje i czeka na podanie wartości dla zmiennej a = input('Podaj a:'); b = input('Podaj b:'); c = input('Podaj c:');
Prezentacja wyników w Matlabie zmienna - proste wypisanie wartości disp( zmienna) - funkcja wypisania wartości disp ('jakiś tekst') - wypisanie tekstu na ekranie
Prezentacja wyników - tekst i dane fprintf('Wartość zmiennej a wynosi %znak \n', a); gdzie %znak to sposób wyświetlania: %d liczba całkowita %e liczba w zapisie wykładniczym, np. 3.1415e+00 %f zapis stałoprzecinkowy Uwaga: \n przejście do nowego wiersza
WYKRESY 2-wymiarowe 1 sposób: Funkcja plot Wymaga utworzenia dwóch wektorów o tej samej liczbie elementów x=0:10 %generowanie wektora co 1 % wart_pocz:wart_koncowa y=[5.1 1.1 -2 -3 4.2 5.5 4.3 3.1 4.5 5.9 4.9] z=[0 2 3 3 5 4 3 4 5 4 9] %trzeci wektor title('wykres') %dodanie tytułu plot(x,y) %rysowanie wykresu plot(x,y,'r',x , z,'w') %dwie krzywe y(x) i z(x)
Przykłady wykresów funkcji x=0:90 %generowanie wektora co 1 y=sin(pi*x/180) %wektor y plot(x,y) %rysowanie x=0:pi/50:6*pi y=cos(2*x)./sqrt(x+1) plot(x,y) Uwaga: zapis kropkowy elementowe dzielenie(mnożenie) wektorów x = - 9:1:9 z = x.^2 plot(x, z)
Wykres funkcji podanej jako parametr tekstowy 2 sposób: Funkcja fplot Wykres funkcji podanej jako parametr tekstowy jedna krzywa: fplot('sin(x*x)/x',[0 4*pi]) punkt dzielenia przez 0 nie jest rysowany - ostrzeżenie dwie krzywe: fplot('[sin(x*x)/x cos(x)]',[0.01 4*pi]) Uwaga: zamiast x może być inna litera jako argument funkcji w jej opisie
Przykładowe wykresy powierzchniowe 3D peaks cylider (srednica) sphere (precyzja)
Korzystamy z funkcji mesh(x,y,z) Dla powierzchni podanej równaniem: Wykresy powierzchniowe (3D) Korzystamy z funkcji mesh(x,y,z) Dla powierzchni podanej równaniem: z=cos3x siny
Piszemy m-plik: clear y = 0:0.01:pi %wektor wierszowy x = y' %wektor kolumnowy! z=cos(3*x) * sin(y) % tablica z jest kwadratowa mesh(x, y, z) rezultat mnożenia dwóch wektorów: * sin y cos3x
2. Metoda wsadowa wykonywania operacji W Matlab-ie można zapisać tekst ciągu instrukcji w pliku tekstowym ASCII o rozszerzeniu m. (tzw. m-pliki lub mex-pliki) W Matlab-ie można jako polecenie wpisać w linii poleceń nazwę pliku z ciągiem instrukcji - instrukcje pobierane kolejno i wykonywane od pierwszej do ostatniej Konieczne jest ustawienie "ścieżki" do naszego foldera w menu Current directory
>>plik >>test1 Można wykonać m-plik w Matlabie wpisując w linii poleceń jego nazwę (bez rozszerzenia) >>plik >>test1 lub z okna edytora- Run W m-pliku wpisujemy kolejne instrukcje (bez znaków >>)
Uwaga: Instrukcje oddzielamy przecinkami lub piszemy w osobnych wierszach Średniki na końcu instrukcji powodują brak wyświetlenia echa instrukcji na ekranie.
Instrukcje sterujące w MATLABIE
Instrukcja warunkowa if warunek1 instrukcje (gdy spełniony warunek1) elseif warunek2 instrukcje (gdy spełniony warunek2) else instrukcje (gdy niespełnione warunki) end
a == 0 (czy równe? – wartość prawda lub fałsz) Przykłady warunków – użycie operatorów porównania: a == 0 (czy równe? – wartość prawda lub fałsz) b<c 2*a >= 5 x ~= 5 (różne od.. ~ to operator negacji
Przykład 1: if i>0 disp(i); end; %… poprzednie instrukcje ustalające wartość zmiennej i if i>0 disp(i); end; jeżeli i jest większe od 0 to wyświetl wartość i, jeśli nie to "nic nie rób"
Przykład 2: end kończy instrukcję a = 1 b = 6 c = 3 delta = b^2 - 4 * a *c; if delta<0 disp ('delta jest ujemne') else disp(delta) end; end kończy instrukcję
Przykład 3: …obliczamy jakieś x if x>0 && x<10 disp ('w przedziale 0 10') else disp('poza przedziałem') end; można też and(x>0, x<10) && operator koniunkcji || operator alternatywy jak w JavaScript
Instrukcja iteracyjna („pętla liczona”) for zmienna = wartość_pocz:krok: wartość_końcowa, instrukcja, …. end
Przykład prostych pętli: 1 4 9 16 25 36 49 64 81 100 %generujemy tablicę for i= 1:1:10, a(i) = i^2; end; disp(a) suma=0; suma=suma+a(i); disp('suma=') disp(suma)
Przykład 4 ("zagnieżdżanie" iteracji): for i= 1:1:5, for j = 1:1:5, a(i , j) = i*j %jakieś wyrażenie f(i,j) end 1 2 3 4 5 6 8 10 9 12 15 16 24 32 20 25
Przykład 6 (sumowanie elementów w tablicy dwuwymiarowej): suma = 0; for i= 1:1:5, for j = 1:1:5, a(i , j) = 2*i - 4* j, suma=suma+a(i , j); end disp(suma)
Przykład 6b (sumowanie dodatnich elementów w tablicy dwuwymiarowej): suma = 0; for i= 1:1:5, for j = 1:1:5, a(i , j) = 2*i - 4* j, if a(i,j)>0 suma=suma+a(i , j); end; end disp(suma)
Przykład 7 (wielokrotny test – wyznaczanie największego elementu) maks=A(1) %założenie for i= 2:1:20, if A(i)>maks maks=A(i) end disp(maks) badamy elementy od 2 do ostatniego
Przykład 8 Ile liczb jest w przedziale [0 5] ile=1 %założenie for i= 1:1:20, if A(i)>=0 && A(i)<=5 ile=ile+1; end disp(ile)
Przykład 9 Wykorzystanie standardowej funkcji max (lub min) A=rand(20) % losowe wypełnienie tablicy 20x20 naj1=max(A) naj2 = max(naj1) wektor maksimów w kolumnach (maksima lokalne) największy z maksimów lokalnych
Podstawowe różnice Javascript vs. Matlab operatory składania ++ += = /= *= %= nie ma negacja ! ~ instrukcja warun-kowa if (warunek) {instrukcje} else if (warunek2) if warunek instrukcje elseif warunek2 end instrukcja for for (inicjacja; warunek;inkrementacja) { } for licznik=inicjacja:krok:wartosc_koncowa
Sortowanie bąbelkowe Sortowanie bąbelkowe skrócone Porównywanie kolejnych par elementów sąsiadujących i zamiana miejscami w przypadku niewłaściwej kolejności 1 2 3 4 ..... N N-1 porównań Wykonujemy N przebiegów Sortowanie bąbelkowe skrócone Przebiegów wykonujemy N-1 W każdym kolejnym przebiegu liczba analizowanych par jest zmniejszana o 1, a
1 PRZEBIEG 96 12 22 76 64 23 74 11 2 PRZEBIEG 12 22 76 64 23 74 11 96 i.t.d.
M-plik - sortowanie "bąbelkowe" clc clear N=5; G=rand(1,N) %stadardowa funkcja sortująca G1=sort(G) %sortowanie bąbelkowe for k=1:N-1 for m=1:N-k if G(m)>G(m+1) pom=G(m); G(m)=G(m+1); G(m+1)=pom; end disp(G) %pokazuje kolejne wypływające "bąbelki" %ostatecznie po posortowaniu disp(G) zamiana miejscami gdy elementy w niewłaściwej kolejności