MECHANIKA 2 Wykład Nr 14 Teoria uderzenia.

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Na szczycie równi umieszczano obręcz, kulę i walec o tych samych promieniach i masach. Po puszczeniu ich razem staczają się one bez poślizgu. Które z tych.
Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Ruch układu o zmiennej masie
Ruch harmoniczny, prosty, tłumiony, drgania wymuszone
Dynamika bryły sztywnej
Teoria maszyn i części maszyn
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Kinematyka punktu materialnego
UKŁADY CZĄSTEK.
Kinematyka.
ATOM WODORU, JONY WODOROPODOBNE; PEŁNY OPIS
Wykład V Zderzenia.
Wykład V 1. ZZP 2. Zderzenia.
Wykład 22 Ruch drgający 10.1 Oscylator harmoniczny
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
Test 2 Poligrafia,
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 2
DYNAMIKA Zasady dynamiki
OPORNOŚĆ HYDRAULICZNA, CHARAKTERYSTYKA PRZEPŁYWU
równanie ciągłości przepływu, równanie Bernoulliego.
Napory na ściany proste i zakrzywione
RÓWNOWAGA WZGLĘDNA PŁYNU
MECHANIKA NIEBA WYKŁAD r.
Biomechanika przepływów
RUCH HARMONICZNY F = - mw2Dx a = - w2Dx wT = 2 P
Biomechanika przepływów
Opracowała: mgr Magdalena Gasińska
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
MECHANIKA NIEBA WYKŁAD r.
Sterowanie – metody alokacji biegunów II
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
ANALIZA DYNAMICZNA MANIPULATORÓW JAKO MECHANIZMÓW PRZESTRZENNYCH
Politechnika Rzeszowska
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Drgania punktu materialnego
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
dr hab. inż. Monika Lewandowska
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Dynamika.
Projektowanie Inżynierskie
PLAN WYKŁADÓW Podstawy kinematyki Ruch postępowy i obrotowy bryły
dr inż. Monika Lewandowska
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Dynamika ruchu płaskiego
REAKCJA DYNAMICZNA PŁYNU MECHANIKA PŁYNÓW
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Ruch drgający Ruch, który powtarza się w regularnych odstępach czasu,
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Zjawiska ruchu Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Zastosowanie zasad dynamiki Newtona w zadaniach
Dynamika bryły sztywnej
Siły tarcia tarcie statyczne tarcie kinematyczne tarcie toczne
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Prowadzący: dr Krzysztof Polko
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
Prowadzący: dr Krzysztof Polko
Drgania punktu materialnego Prowadzący: dr Krzysztof Polko
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

MECHANIKA 2 Wykład Nr 14 Teoria uderzenia

DYNAMIKA PUNKTU NIESWOBODNEGO Punkt, którego ruch ograniczony jest jakimiś więzami, nazywamy punktem nieswobodnym. Więzy oddziaływają na poruszający się punkt pewnymi siłami, które nazywamy reakcjami więzów. Istnienie więzów powoduje więc pojawienie się w równaniach rucha dodatkowych sił – reakcji więzów. Równanie ruchu przyjmie postać (1)

Ruch punktu po gładkiej równi pochyłej Równania ruchu: Po przekształceniu otrzymujemy:

Ruch wahadła matematycznego Równania ruchu: Rys. 7 gdzie: Po podstawieniu:

Jest to równanie ruchu harmonicznego prostego. Przy małych wychyleniach wahadła sin =  , wówczas więc równanie ruchu przybiera postać: Jest to równanie ruchu harmonicznego prostego. Przypomnijmy, że równanie ruchu harmonicznego prostego ma postać: Zatem dla wahadła:

Po scałkowaniu względem czasu otrzymamy wzór na prędkość: Równanie ruchu ma postać: Po scałkowaniu względem czasu otrzymamy wzór na prędkość: Warunek początkowy: dla

Po wyznaczeniu stałej c i podstawieniu do wzoru na v: Ponieważ to Załóżmy, że dla t = 0, wówczas:

Zderzenie proste środkowe Zderzenie zachodzi w przypadku działania na siebie dwu ciał siłą o skończonej wartości w bardzo krótkim przedziale czasu. Zderzenie środkowe charakteryzuje się tym, że normalna do płaszczyzny styku w punkcie styku obu ciał przechodzi przez środki masy tych ciał. Rys. 2

Okresy zderzenia W procesie zderzenia rozróżniamy dwa charakterystyczne okresy: a)        - pierwszy okres: od chwili zetknięcia się ciał aż do chwili największego zbliżenia ich środków mas, przy równoczesnym odkształcaniu się obu ciał, b)       - drugi okres: od chwili rozpoczęcia oddzielania się obu mas.

Pęd zderzających się mas Rys. 2 Pęd przed po zderzeniu jest taki sam Stąd – wspólna prędkość obu mas przy końcu pierwszego okresu.

Energia kinetyczna W wyniku odkształcania się ciał przy zderzeniu występuje zmiana energii kinetycznej układu w pewnej jej części na pracę odkształcenia. Strata ta może być pozorna lub rzeczywista, w zależności od tego, czy zostanie zwrócona w drugim okresie zderzenia. Oznaczmy ją przez (23) Uwzględniając wzór otrzymamy (23a)

Pęd układu w drugim okresie zderzenia Przechodząc do drugiego okresu zauważamy, że obowiązuje nadal zasada zachowania pędu badanego układu, czyli że (24)

Zderzenie sprężyste i plastyczne Prędkości oraz zależeć będą od tego, czy strata energii kinetycznej została: a) zwrócona w 100% (zderzenie ciał doskonale sprężystych), b) pochłonięta w 100% (zderzenie ciał idealnie plastycznych), c) pochłonięta częściowo (zderzenie ciał rzeczywistych).

Współczynnik zderzenia (25) przy czym oczywiście Wartości graniczne współczynnika odpowiadają: dla ciała idealnie sprężystego, dla ciała idealnie plastycznego.

Prędkości po zderzeniu Uwzględniając równania (24) i (25) otrzymamy po podstawieniu i przekształceniu (26) Dla zderzenia ciał idealnie sprężystych (27)

Rzeczywista strata energii kinetycznej Dla zderzenia ciał idealnie plastycznych (28) Rzeczywista strata energii kinetycznej Rzeczywista strata energii kinetycznej wynosi Po podstawieniu wartości oraz ze wzoru (26) otrzymamy

ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE Charakterystyczne przypadki: 1. (ciało doskonale sprężyste). Ze wzorów (27) otrzymamy: Po zderzeniu nastąpiła więc wymiana prędkości pomiędzy obiema masami. 2. , (nieruchoma ściana), . Ze wzorów (27) otrzymamy: Masa m1 odbija się z tą samą prędkością.

ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE 3. , (nieruchoma ściana), (ciało rzeczywiste). Wykorzystując wzory (26) napiszemy: Masa m2 odbije się z prędkością zmniejszoną o k . Przypadek ten podaje zarazem prosty sposób wyznaczania współczynnika zderzenia k. Jak wiadomo bowiem z kinematyki, ciało spadające z wysokości H na stałą podstawę ma w początkowej chwili zderzenia prędkość . Po odbiciu wznosi się na wysokość h, czyli przy końcu drugiego okresu zderzenia miało ono prędkość . Ponieważ (pomijając znak minus, gdyż interesuje nas tylko moduł), zatem k =

ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE Przejdźmy teraz do omówienia zderzenia ukośnego środkowego (rys. 3). Rozkładamy wektory prędkości na składowe normalne i styczne do płaszczyzny styku Rys. 3

ZDERZENIE PROSTE ŚRODKOWE ORAZ UKOŚNE ŚRODKOWE Jeżeli pominiemy straty tarcia przy zderzeniu i możliwości, ewentualnych obrotów mas (przyjęto je jako punkty materialne) w wyniku na ogół różnych wartości składowych stycznych oraz (przyjmując idealnie gładkie powierzchnie styku mas), to w wyniku zderzenia zmienią się tylko składowe normalne. Do oceny zmian składowych normalnych wykorzystamy wzory (26), wprowadzając jedynie odpowiednie wskaźniki n, składowe zaś styczne pozostaną bez zmiany, czyli: oraz Ostatecznie składając wektorowo otrzymamy po zderzeniu

Oddziaływanie strumienia padającego na przegrodę Do wyznaczenia reakcji przegrody na działanie strumienia, padającego pod kątem (rys. 4), wykorzystamy zasadę pędu i impulsu według wzoru Rys. 4 Załóżmy, że dane są ponadto przekrój strumienia A, gęstość ρ (niezmienna w czasie) oraz średnia prędkość strumienia v.

Oddziaływanie strumienia padającego na przegrodę W czasie dt wystąpi przemieszczenie przekroju ab w położenie a'b' (rys. 4) o od vdt. Równocześnie strumień rozdzielając się na przegrodzie przemieści się w swych strugach z położeń ef w e'f' oraz z położeń cd w c'd' (rys. 4). Zauważmy, że kierunki wektorów prędkości tych rozdzielonych na przegrodzie strug są przeciwne i styczne do przegrody. Rys. 4

Oddziaływanie strumienia padającego na przegrodę Zgodnie więc z zasadą pędu i impulsu (19) napiszemy rzutując wektory pędów pulsu na oś , prostopadłą do przegrody

Oddziaływanie strumienia padającego na przegrodę oraz Gdyż wektory pędów tych strug są styczne do przegrody, zatem Stąd ostatecznie otrzymujemy reakcję przegrody w kierunku osi