TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel

Slides:



Advertisements
Podobne prezentacje
Entropia Zależność.
Advertisements

I zasada termodynamiki
Gaz doskonały, równanie stanu Przemiana izotermiczna gazu doskonałego
I zasada termodynamiki; masa kontrolna i entalpia
Energia wewnętrzna jako funkcja stanu
Wykład Mikroskopowa interpretacja entropii
TERMODYNAMIKA CHEMICZNA
TERMODYNAMIKA CHEMICZNA
RÓWNANIE CLAUSIUSA-CLAPEYRONA
Technika wysokiej próżni
procesy odwracalne i nieodwracalne
TERMODYNAMIKA CHEMICZNA
TERMODYNAMIKA CHEMICZNA
Wykład Fizyka statystyczna. Dyfuzja.
I zasada termodynamiki
Podstawy termodynamiki
Zależność entropii od temperatury
Kinetyczna Teoria Gazów Termodynamika
Podstawy termodynamiki Gaz doskonały
Wykład I Termodynamika
Termodynamics Heat, work and energy.
Materiały pochodzą z Platformy Edukacyjnej Portalu
TERMODYNAMIKA.
Makroskopowe właściwości materii a jej budowa mikroskopowa
Wykład VIII Termodynamika
Oddziaływanie z otoczeniem jest opisane przez działanie sił.
Wykład 14 Termodynamika cd..
Wykład VII Termodynamika
Termodynamika cd. Wykład 2. Praca w procesie izotermicznego rozprężania gazu doskonałego V Izotermiczne rozprężanie gazu Stan 1 Stan 2 P Idealna izoterma.
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Układy i procesy termodynamiczne
FIZYKA dla studentów POLIGRAFII Przejścia fazowe Zjawiska transportu
Praca w przemianie izotermicznej
Temat: Prawo ciągłości
Zmiany stanów skupienia
Temperatura, ciśnienie, energia wewnętrzna i ciepło.
I zasada termodynamiki. I zasada termodynamiki (IZTD) Przyrost energii wewnętrznej ciała jest równy sumie dostarczonego ciału ciepła Q i wykonanej nad.
Gaz doskonały w naczyniu zamkniętym
PRZEMIANY STAŁEJ MASY GAZU DOSKONAŁEGO
Elementy kinetycznej teorii gazów i termodynamiki
Podstawy Biotermodynamiki
Gaz doskonały i nie tylko
6. Przemiany termodynamiczne gazu doskonałego.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Ciśnienie Warunki normalne Warunki standardowe.
Kinetyczna teoria gazów
Przygotowanie do egzaminu gimnazjalnego
Fizyka statystyczna Prawo gazów doskonałych.
Dynamika.
1 zasada termodynamiki.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Skraplanie.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Pierwsza zasada termodynamiki
5. Równanie stanu gazu doskonałego.
Entropia gazu doskonałego
Przygotowała; Alicja Kiołbasa
Stany skupienia wody.
510.n moli gazu o  =c p /c v, ogrzano izochorycznie od temperatury T 1 do T 2. Ile ciepła pobrał gaz, jeśli stała gazowa jest R?
Druga zasada termodynamiki praca ciepło – T = const? ciepło praca – T = const? Druga zasada termodynamiki stwierdza, że nie możemy zamienić ciepła na pracę.
Fizyka statystyczna a termodynamika fenomenologiczna Fizyka statystyczna (teoria kinetyczno-cząsteczkowa) i termodynamika - dział fizyki zajmujący się.
Termodynamiczna skala temperatur Stosunek temperatur dowolnych zbiorników ciepła można wyznaczyć mierząc przenoszenie ciepła podczas jednego cyklu Carnota.
TERMODYNAMIKA.
9. Termodynamika 9.1. Temperatura
457.Gaz doskonały o masie molowej M, objętości V, temperaturze T, ciśnieniu p i masę molową M. Znane są: liczba Avogadro NA i stała gazowa R. Jaka jest:
Równowaga cieczy i pary nasyconej
Wzory termodynamika www-fizyka-kursy.pl
Chemia Fizyczna Wykład Nr 1 ( ).
TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel
Zapis prezentacji:

TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel informatyka +

Model gazu doskonałego Przemiany gazowe I zasada termodynamiki PROGRAM WYKŁADU Bilans cieplny Przemiany fazowe Model gazu doskonałego Przemiany gazowe I zasada termodynamiki Cykle termodynamiczne II zasada termodynamiki informatyka +

BILANS CIEPLNY informatyka + Zerowa zasada termodynamiki: Jeżeli dwa ciała mają tę samą temperaturę, wówczas nie ma między nimi przepływu ciepła; lub, równoważnie, gdy dwa ciała są w równowadze cieplnej z trzecim, są w równowadze cieplnej ze sobą. Energia wewnętrzna U to całkowita energia układu fizycznego związana z wewnętrznymi ruchami jego mikroskopowych składników i ich wzajemnymi oddziaływaniami. informatyka +

BILANS CIEPLNY informatyka + 5 Zmiana energii wewnętrznej U układu jest równa sumie pracy W wykonanej nad układem (lub przez układ) oraz ciepła Q, czyli ilości energii dostarczonej do układu (lub pobranej z niego) na sposób cieplny, czyli na skutek różnicy temperatur. Jest to treść uogólnionej zasady zachowania energii – pierwszej zasady termodynamiki. Zasadę zachowania energii dla zjawisk, w których zachodzi tylko wymiana ciepła, nazywamy bilansem cieplnym. Czyli w układzie izolowanym cieplnie od otoczenia ilość ciepła pobranego przez ciało o niższej temperaturze jest równa ilości ciepła oddanego przez ciało o wyższej temperaturze: Q (pobrane) = Q (oddane). informatyka + 5 5

Przemiany fazowe informatyka + 6 6

Przemiany fazowe informatyka + 7 Przejścia między fazami: stałą, ciekłą i gazową: Ciecz → gaz: parowanie (1) Gaz → ciecz: skraplanie (2) Ciało stałe → gaz: sublimacja (3) Gaz → ciało stałe: resublimacja (4) Ciecz → ciało stałe: krzepnięcie (5) Ciało stałe → ciecz: topnienie (6) Podczas topnienia, parowania i sublimacji następuje pochłanianie energii, a podczas krzepnięcia, skraplania i resublimacji – wydzielanie energii. informatyka + 7 7

Model gazu doskonałego Założenia, jakie spełnia gaz doskonały: Składa się z ogromnej liczby cząsteczek, które zajmują zaniedbywalnie małą objętość Siły oddziaływania między cząsteczkami są pomijalnie małe Cząsteczki gazu są w ciągłym chaotycznym ruchu i podlegają prawom dynamiki Newtona Cząsteczki zderzają się ze sobą i ze ściankami zbiornika wyłącznie sprężyście informatyka + 8 8

Model gazu doskonałego Tak modelujemy zachowanie cząsteczek gazu doskonałego: informatyka + 9 9

Model gazu doskonałego Opis matematyczny: Temperatura bezwzględna gazu, T, jest wprost proporcjonalna do średniej energii kinetycznej <Ek> cząsteczek gazu <Ek> = 3/2 kB T. Stała kB jest to tzw. stała Boltzmanna; jej wartość wynosi 1,38 • 10 -23 J/K. Gaz doskonały spełnia równanie stanu gazu doskonałego, znane też jako równanie Clapeyrona. Przedstawia ono zależność między ciśnieniem p gazu, jego objętością V i temperaturą bezwzględną T: p V = n R T, gdzie n jest liczbą moli rozważanego gazu. Wielkość R jest tzw. uniwersalną stałą gazową, R = 8,314 J/ mol•K. informatyka + 10 10

Przemiany gazowe informatyka + 11 Rozważmy 3 szczególne przypadki równania Clapeyrona: T = const; zmiana ciśnienia i objętości gazu doskonałego przy stałej temperaturze - przemiana izotermiczna (prawo Boyle’a- Mariotte’a) p = const; zmiana objętości gazu doskonałego pod wpływem zmiany temperatury przy stałym ciśnieniu – przemiana izobaryczna (prawo Gay-Lussaca) V = const: zmiana ciśnienia gazu doskonałego pod wpływem zmiany temperatury przy stałej objętości – przemiana izochoryczna (prawo Charlesa). informatyka + 11 11

I zasada termodynamiki I zasada termodynamiki jest ogólniejszą postacią zasady zachowania energii, uwzględniającą także zjawiska cieplne. Zmiana energii wewnętrznej U układu jest równa sumie pracy W wykonanej nad układem (lub przez układ) oraz ciepła Q, czyli energii dostarczonej do układu (lub pobranej z niego) na sposób cieplny (tj. na skutek różnicy temperatury): Δ U = W + Q W przypadku układu izolowanego cieplnie od otoczenia zasada ta mówi, że zmiana energii wewnętrznej równa się wykonanej pracy, W = ΔU. Jeśli otoczenie wykonuje pracę nad układem, to W>0; gdy układ wykonuje pracę nad otoczeniem, to W<0. W braku izolacji cieplnej układ wymienia z otoczeniem energię na sposób cieplny. Może ona być dostarczana do układu (Q>0) lub oddawana przez układ (Q<0). informatyka + 12 12

Cykle termodynamiczne Jeśli kilka przemian następuje po sobie, a po ostatniej z nich parametry układu wracają do wartości początkowych, mówimy o cyklu termodynamicznym. Każda krzywa zamknięta w płaszczyźnie (p,V) przedstawia taki cykl. W procesie przechodzenia przez taki cykl układ może np. pobrać ciepło i wykonać pracę nad otoczeniem, wiec działać jak silnik cieplny. Silnik cieplny pobiera ciepło Q1 ze zbiornika ciepła (grzejnika) o temperaturze T1. Część tego ciepła zamieniana jest na pracę W, a reszta Q2 =Q1- W jest oddawana do zbiornika ciepła o temperaturze T2 < T1 (chłodnicy). Sprawność silnika cieplnego wynosi η = W / Q1 = 1 – Q2/ Q1. Na rysunku przedstawiony jest schematyczny obraz przekazu energii w cyklu silnika cieplnego. informatyka + 13 13

Cykle termodynamiczne Schemat działania silnika cieplnego informatyka + 14 14

Cykle termodynamiczne Cykl Carnota Jest to najwydajniejszy cykl działania odwracalnego silnika cieplnego. Składa się on z 4 przemian, którym podlegałoby ciało robocze w silniku: a. Rozprężanie izotermiczne w temp. T1 z pobraniem ciepła Q1 b. Rozprężanie adiabatyczne ze spadkiem temperatury z T1 do T2 c. Sprężanie izotermiczne w temperaturze T2 z oddaniem ciepła Q2 d. Sprężanie adiabatyczne ze wzrostem temperatury od T2 do T1 . Sprawność silnika Carnota wynosi η = 1 – T2 / T1 Carnot udowodnił, że jest to najwyższa możliwa sprawność dla cyklu termodynamicznego. informatyka + 15 15

Cykle termodynamiczne informatyka + 16 16

II zasada termodynamiki I zasada termodynamiki jest zasadą zachowania energii, ale nic nie mówi o kierunku zachodzenia procesów termodynamicznych. Pozwala na zajście wszystkich procesów, w których energia jest zachowana, ale wiemy, że niektóre z nich nie zachodzą. Dopuszcza też pełną równoważność energii w postaci ciepła i pracy, choć z rozważań dotyczących silników wiemy, że tylko część dostarczonego ciepła możemy zamienić na pracę. Potrzebna jest nam więc jeszcze jedna zasada - II zasada termodynamiki. Znamy kilka sformułowań II zasady termodynamiki, pochodzących od różnych fizyków: 1. Nie istnieje proces termodynamiczny, którego jedynym skutkiem byłoby pobranie ciepła ze zbiornika o temperaturze niższej i przekazanie go do zbiornika o temperaturze wyższej (sformułowanie Clausiusa) 2. Nie jest możliwy proces, którego jedynym skutkiem byłoby pobranie pewnej ilości ciepła ze zbiornika i jego zamiana w równoważną ilość pracy. (sformułowanie Kelvina) informatyka + 17 17

II zasada termodynamiki 2. Nie jest możliwy proces, którego jedynym skutkiem byłoby pobranie pewnej ilości ciepła ze zbiornika i jego zamiana w równoważną ilość pracy (sformułowanie Kelvina). 3. Nie można zbudować perpetuum mobile II rodzaju 4. W samorzutnej ewolucji układu izolowanego entropia zawsze rośnie. informatyka + 18 18