Grafika3D Domyślnie obiekty 3D widzimy pod określonym kątem. Możemy go zmieniać Możemy zdefiniować punkt widzenia kamery, środek obrazu i kąt widzenia-ViewPoint,

Slides:



Advertisements
Podobne prezentacje
PRACA I ENERGIA 1. Praca stałej siły 2. Praca zmiennej siły
Advertisements

Blok I: PODSTAWY TECHNIKI Lekcja 7: Charakterystyka pojęć: energia, praca, moc, sprawność, wydajność maszyn (1 godz.) 1. Energia mechaniczna 2. Praca 3.
1 Dr Galina Cariowa. 2 Legenda Iteracyjne układy kombinacyjne Sumatory binarne Sumatory - substraktory binarne Funkcje i układy arytmetyczne Układy mnożące.
Tworzenie odwołania zewnętrznego (łącza) do zakresu komórek w innym skoroszycie Możliwości efektywnego stosowania odwołań zewnętrznych Odwołania zewnętrzne.
© Matematyczne modelowanie procesów biotechnologicznych - laboratorium, Studium Magisterskie Wydział Chemiczny Politechniki Wrocławskiej, Kierunek Biotechnologia,
Excel 2007 dla średniozaawansowanych zajęcia z dnia
Ekonometria stosowana Autokorelacja Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ćwiczenia Zarządzanie Ryzykiem Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem” 1.
FORMAT WYMIANY DANYCH GEODEZYJNYCH TANAGO. TANGO V. 1.
Wypadkowa sił.. Bardzo często się zdarza, że na ciało działa kilka sił. Okazuje się, że można działanie tych sił zastąpić jedną, o odpowiedniej wartości.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
Równowaga rynkowa w doskonałej konkurencji w krótkim okresie czasu Równowaga rynkowa to jest stan, kiedy przy danej cenie podaż jest równa popytowi. p.
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Prezentacja – 4 Matematyczne opracowywanie.
Zależności wprost proporcjonalne Radosław Hołówko Konsultant: Agnieszka Pożyczka.
Standardy de facto zapisu georeferencji map o postaci rastrowej definicja georeferencji standard „World File” standard GeoTIFF.
Menu Jednomiany Wyrażenia algebraiczne -definicja Mnożenie i dzielenie sum algebraicznych przez jednomian Mnożenie sum algebraicznych Wzory skróconego.
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Własności elektryczne materii
I T P W ZPT 1 Realizacje funkcji boolowskich Omawiane do tej pory metody minimalizacji funkcji boolowskich związane są z reprezentacją funkcji w postaci.
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
Ruch jest wszechobecnym zjawiskiem w otaczającym nas świecie. Poruszają się miedzy innymi: ludzie, samochody, wskazówki zegara oraz maleńkie atomy.
Transformacja Lorentza i jej konsekwencje
Jak tworzymy katalog alfabetyczny? Oprac.Regina Lewańska.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
 Austriacki fizyk teoretyk,  jeden z twórców mechaniki kwantowej,  laureat nagrody Nobla ("odkrycie nowych, płodnych aspektów teorii atomów i ich zastosowanie"),
O PARADOKSIE BRAESSA Zbigniew Świtalski Paweł Skałecki Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski Zakopane 2016.
Grafika3D Domyślnie obiekty 3D widzimy pod określonym kątem. Możemy go zmieniać Możemy zdefiniować punkt widzenia kamery, środek obrazu i kąt widzenia-ViewPoint,
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Wykład IV Zakłócenia i szumy.
Prowadzący: dr Krzysztof Polko
W kręgu matematycznych pojęć
Optyka geometryczna.
Opracowanie wyników pomiaru
Wyznaczanie miejsc zerowych funkcji
System wspomagania decyzji DSS do wyznaczania matematycznego modelu zmiennej nieobserwowalnej dr inż. Tomasz Janiczek.
MECHANIKA 2 Dynamika układu punktów materialnych Wykład Nr 9
terminologia, skale pomiarowe, przykłady
RUCH KULISTY I RUCH OGÓLNY BRYŁY
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Prowadzący: dr Krzysztof Polko
Biomechanika przepływów
Teoria sterowania Materiał wykładowy /2017
Wykład 8 – Ruch masy w układach ożywionych. Dyfuzja. C.D.
Rekursje Tak jak w innych językach funkcje mogą odwoływać się same do siebie Możemy regulować głębokość przed stwierdzeniem błędu (MaxRecursion, $RecursionLimit,
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ
Podstawy automatyki I Wykład /2016
Metody energetyczne w rekonstrukcji zderzeń z jednośladami
Metody syntezy logicznej w zadaniach pozyskiwania wiedzy
Elementy analizy matematycznej
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Elementy fizyki kwantowej i budowy materii
Podstawy teorii zachowania konsumentów
Symulacje komputerowe
Tensor naprężeń Cauchyego
Instrukcje wyboru.
Podstawy informatyki Zygfryd Głowacz.
Rozwiązywanie równań Podstawowa komenda do rozwiązywania układów równań Solve[eqns,vars] -równania i układy równań -nierówności Równania mogą być sformułowane.
Dokumentacja rysunkowa
Grafika komputerowa Rzutowanie.
Ruch masy w układach ożywionych. Dyfuzyjny transport masy
Implementacja rekurencji w języku Haskell
Wytrzymałość materiałów
Prawa ruchu ośrodków ciągłych c. d.
Mechanika płynów Podstawy dynamiki płynów rzeczywistych
Mikroekonomia Wykład 4.
Własności asymptotyczne metody najmniejszych kwadratów
Zapis prezentacji:

Grafika3D Domyślnie obiekty 3D widzimy pod określonym kątem. Możemy go zmieniać Możemy zdefiniować punkt widzenia kamery, środek obrazu i kąt widzenia-ViewPoint, ViewCenter, ViewAngle Możemy również zmieniać ustawienia światła Lighting->None, „Automatic”, „Spot”, „Ambient”, „Directional”

Elementarne Obiekty Arrow[] Ball[{…}] Ellipsoid[{…}] Cone[{pt1,pt2},r] Cuboid[…] Cylinder[{{x1,y1,z1},{x2,y2,z2},r] Sphere[{x,y,z},r] Tube[…] Polygon Line[{…}] Point[] Text[…]

Przekształcenia geommetryczne grafiki 3D Translate[#,v] przesuwa obiekt o wektor v. Rotate[#,a,v,p] obraca obiekt 3D # o kąta a wzdłuż wektora v względem punktu p GeometricTransformation[#,{m,v}]-przekształcenie każdego punktu objektu # macierzą m, a następnie przesunięcie o wektor v.

Właściwości (głównie) obiektów 3D EdgeForm[{styl,kolor,grubość}] FaceForm[{…}]-format (głównie kolor) ścian. JoinForm[{„Bevel”,”Round”,Miter”}] Capform[{„Butt”,”Round”}] Opacity[r]-przezroczystość Specularity[a,b]- obcicie Światła w stopniu a od powierzchni o gładkości b.

GraphicsComplex[{v},#[n1,n2,…] Zastępuje jeden wiele obiektów graficznym jednym Punkty użyte w obiekcie są zebrane w tablicy w. Do tworzących obiekt punktów odwołujemy się poprzez ich numer porządkowy Zaimportowane obiekty 3D mają formę kompleksów graficznych

Objętość Tworząc obiekt 3D warto pamiętać, czy tworzymy obiekt złożony z wielościanów, czy ma objętość. Przykład Sphere-Ball Tube-Cylinder

Granice Limit[f,x->lim,Direction->+/-1] Jeżeli granica nie istnieje w sensie matematyczym, Mathematica może podać ją w postaci przedziału możliwych zakresów (sinus) Jak zawsze, podawane są wyniki prawdziwe w ogólności, pomijając przypadki specjalne (liczby pierwsze)

Pochodne f’[x] D[f,x] D[f,{{x1,x2,…}}]-wektor pochodnych po zmiennych x1,x2,x3 D[f,{x,n}]-pochodna n-tego rzędu D[f,x1,x2]-pochodna po zmiennych x1,x2, NonConstants->…-przyjęcie założenia o wyrażeniach niestałych Dt[f,x]-Różniczka zupełna, zakłada, że nie ma stałych

Całkowanie -Oznaczone -Nieoznaczone g[x,…]=Integrate[f[x,…],x,…] Integrate[f[x],{x,x0,x1}]=g[x1]-g[ x0]

Całkowanie po obszarach Integrate[f[x],Element[x,region]] Regiony to zbiory Przynależność do zbioru w tym kontekście nie jest funkcją logiczną Alternatywna wersja Integrate[f[x]Boole[g[x],{x,x0,x1}] Różnica prędkośc Podobnie: Sum

Funkcje jako wektory y Normalizacja do Delty Diraca p0 x x0

Przykłady funkcji ortogonalnych Przestrzeń K(x) F(x) {-1,1} 1 LegendreP[n,x] {-inf,inf} Exp[-x^2] HermiteteH[n,x] {0,2Pi} {1/Sqrt[2Pi], 1/Sqrt[Pi]Sin[nx] {0,inf} x^l Exp[-x] LagurerreL[n,l,x] Sfera SphericalHarmonicY[l,m,theta,phi] Funkcje bazowe pozwalają znaleźć odwzorowanie funkcji prawie ciągłych na nieskończone ciagi.

„Składowe” funkcji Delta Diraca- funkcja uogólniona, czyli funkcjonał Pochodna funkcji schodkowej a całka z delty Diraca

Przybliżenia delty Diraca a UnitBox[a x] a UnitTriangle[a x] Przy przybliżaniu delty Diraca musimy uważać na tempo zbieżności

Pola wektorowe Pola wektorowe przypisują wektory wszystkim punktom w przestrzeni Operator Nabla

Potencjał skalarny siły Właściwości pól wektorowych Źródłowość, dywergencja, mówi nam, czy pole reprezentuje przepływ od źródła do ścieku Rotacja-mówi, czy pole jest wirowe

Potencjał wektorowy Pole opisane potencjałem wektorowym nie może być źródłowe Pole opisane potencjałem skalarnym nie może być wirowe Laplacian Iloczyn pola skalarnego i wektorowego

Transformacje Cechowania Do potencjału skalarnego możemy dodać funkcję liniową, do potencjału wektorowego- pole wirowe. W efekcie otrzymujemy to samno pole.

Zastępowanie całek ds V S dl

Dekompozycja Hermholtza Znajdywanie dla danego pola potencjału skalarnego i wektorowego Dowód: Zastosować Laplacian F/r Rozwinąć Laplacian Wyłączyć pierwsze operatory Nabla Zmienić zmienne w różniczkach Skorzystać z rozwinięcia iloczynów pól Zaniedbać całki po powierzchni

Pola wektorowe w v. 8.0 Needs[„VectorAnalysis`”] Coordinates Cartesian[Xx,Yy,Zz], Spherical[Rr,Ttheta,Pphi],Cylidrical[Rrho,Ttheta,Zz], Toroidal,…,Conical SetCoordinates Div,Curl,Laplacian JacobianMatrix, JacobianDet

Komendy dla pól wektorowych Grad[f[x1,x2,…],{x1,x2,…}]-gradient Div[f,{x1,x2,…}]-dywergencja Curl[f,{x1,x2,x3,…}]-rotacja Laplacian[f,{x1,x2,x3,…}]-LaplacianeDel[x] Symbol Nabli VectorPlot[…]-wykres dwuwymiarowego pola wektorowego VectorPlot3D[…] ListVectorPlot[…] SliceVectorPlot3D[f,s,…]-wykres pola wektorowego na wyznaczonej płaszczyźnie s CoordinateChartData[System1, „Metric”]-macierz przejścia (Jacobian) do układu współrzędnych („InverseMetric”) Opcje StreamPoints-ilość punków linii strumienia StreamScale-grubość linii strumienia VectorStyle