CERN - pierwsze globalne laboratorium

Slides:



Advertisements
Podobne prezentacje
Festiwal Nauki Politechnika Warszawska Wydział Fizyki.
Advertisements

Misja Politechniki Warszawskiej Nauka To współ- działanie trzech
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
Elementarne składniki materii
Festiwal Nauki Politechnika Warszawska Wydział Fizyki.
Rodzaje cząstek elementarnych i promieniowania
Raymond Davis Jr. jako pracownik Brookhaven National Laboratory wymyślił pionierską metodę chwytania neutrin słonecznych za pomocą tetrachloroetylenu.
Bardzo zimny antywodór
Seminarium Sprawozdawcze Zakładu PVI Informacje o Zakładzie, L.Białkowska GRID, W.Wiślicki Bieżące eksperymenty.
1 Charakterystyki poprzeczne hadronów w oddziaływaniach elementarnych i jądrowych wysokiej energii Charakterystyki poprzeczne hadronów w oddziaływaniach.
Czy ciemna materia jest supersymetryczna?
Nowe wyniki w fizyce zapachu
60 lat fizyki hiperjąder Hiperjądra to struktury jądrowe w skład których, poza protonami I neutronami, wchodzą hiperony. Odkrycie hiperjąder miało miejsce.
Dariusz Bocian / 1 Seminarium ZFCE Warszawa, 1 kwiecień, 2005 Pomiar świetlności akceleratora LHC przy użyciu procesu dwufotonowego Dariusz Bocian Dariusz.
FIZYKA dla studentów POLIGRAFII Ruch ładunku w polu magnetycznym i elektrycznym.
Ewolucja Wszechświata
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
Wydział Fizyki Politechnika Warszawska Festiwal Nauki
Neutrina z supernowych
Badanie rozpadów mezonu  w eksperymencie WASA
Marcin Berłowski, Zakład Fizyki Wielkich Energii IPJ
Egzotyczne nuklidy a historia kosmosu
Co odkryje akcelerator LHC ?
Wprowadzenie do fizyki
Podział akceleratorów Główny podział akceleratorów uwzględnia kształt toru i metodę przyspieszania: Liniowe - cząstki przyspieszane są na odcinku prostym:
Nowości w fizyce zapachu
Dlaczego we Wszechświecie
Ewa Rondio Narodowe Centrum Badań Jądrowych Warszawa, RADA DO SPRAW ATOMISTYKI.
Elementy fizyki jądrowej
Śladami Marii Curie : odkrycie nowej promieniotwórczości
AKADEMIA PODLASKA W SIEDLCACH
r. Seminarium Sprawozdawcze Zakładu Fizyki Wielkich Energii.
CERN - pierwsze globalne laboratorium CERN, Physics Department
CERN i fizyka jadrowa: od wlasnosci jadra atomowego po medycyne
CERN – pierwsze globalne laboratorium
Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa.
Czego oczekujemy od LHC?
CERN - pierwsze globalne laboratorium
Historia Wczesnego Wszechświata
Andrzej SIEMKO CERN, Departament Technologii Akceleratorów
Jak działa LHC prezenter: Mariusz Sapinski, slajdy: Andrzej SIEMKO
CERN - mekka dla fizyków
Jak się tego dowiedzieliśmy? Przykład: neutrino Przypomnienie: hipoteza neutrina Pauli ’30 Przesłanki: a) w rozpadzie  widmo energii elektronu ciągłe.
Wczesny Wszechświat Krzysztof A. Meissner CERN
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa.
CERN - mekka dla fizyków
Fizyka jądrowa Kusch Marta I F.
Andrzej SIEMKO CERN, Departament Technologii Akceleratorów
FIZYKA CZĄSTEK od starożytnych do modelu standardowego i dalej
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Fizyka jądrowa Rozpady jąder, promieniotwórczość, reakcje rozszczepiania i syntezy jąder.
Warszawa, Jan Kisiel Instytut Fizyki, Uniwersytet Śląski, Katowice Perspektywy akceleratorowej fizyki neutrin Co wiemy? Czego.
Podstawy fizyki cząstek III Eksperymenty nieakceleratorowe Krzysztof Fiałkowski.
Jądro atomowe - główny przedmiot zainteresowania fizyki jądrowej
Promieniowanie jądrowe. Detektory promieniowania jądrowego
Podstawy fizyki cząstek III Eksperymenty nieakceleratorowe Krzysztof Fiałkowski.
O przygodzie naukowej w Europejskim Centrum Badań Jądrowych (CERN) w Genewie Magdalena Kowalska CERN, PH-Dept.
Cząstki elementarne..
CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept.
Akceleratory Tomasz Maroszek Wydział Górnictwa i Geoinżynierii
Kompleks pomiarowy i eksperymenty w CERN 3 marca 2004 r. 1 Zderzenia Ciężkich Jonów - wykład autor: Grzegorz Gałązka prezentacja do wykładu: “Zderzenia.
Izotopy i prawo rozpadu
Co i gdzie się mierzy Najważniejsze ośrodki fizyki cząstek na świecie z podaniem ich najciekawszych wyników i kierunków przyszłych badań Charakterystyka.
Wybrane zagadnienia technik doświadczalnych FWE
Polska i polscy fizycy w CERN: departmenty EP i TH
Fizyka neutrin – wykład 11
Wstęp do fizyki cząstek
Oddziaływania relatywistycznych jąder atomowych
Polska i polscy fizycy w CERN: departmenty EP i TH
Fizyka jądrowa. IZOTOPY: atomy tego samego pierwiastka różniące się liczbą neutronów w jądrze. A – liczba masowa izotopu Z – liczba atomowa pierwiastka.
Zapis prezentacji:

CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept.

Menu Co to jest właściwie CERN? Trochę historii Kilku CERN-owskich Noblistów Co badamy? Obecne przyspieszacze Przykłady eksperymentów: cząstki elementarne (LHC i CNGS) fizyka jądrowa i atomowa antymateria na ziemi i we Wszechświecie Wiele więcej: skanery PET, WWW, GRID, ‘Anioły i Demony’, … Moja przygoda z CERN-em

CERN jako organizacja Europejska jednostka badawcza założona w r1954: Utrzymywana ze skladek 20 Europejskich krajów członkowskich Nie jest uniwersytetem, zatem nie może nadawać tytułów (magister, doktor, itp), ALE: - prace magisterskie, doktoranckie, habilitacyjne moga byc oparte o prace w CERNie - CERN może opłacać magistrantów i doktorantów Nie podlega jurysdykcji ani opodatkowaniu krajów goszczących (Francji i Szwajcarii)

pomiędzy Szwajcarią i Francją Położenie pomiędzy Szwajcarią i Francją CERN (Prevessin) CERN (Meyrin) Do Genewy

CERN jako laboratorium Położone pod Genewa, na granicy Szwajcarsko-Francuskiej Główna część laboratorium (Meyrin site): w Szwajcarii, oficjalna waluta: Frank Szwajcarski Mniejsza część (Prevessin site): we Francji Kadra: 2500 pracowników opłacanych całkowicie z budżetu CERN (głównie pracownicy administracyjni, technicy, inżynierowie; tylko 100-200 pracuje jako fizycy, z czego większość teoretycy) 10 000 tzw. “użytkowników” – inżynierowie i fizycy wysłani przez instytut macierzysty do CERNu (na 5-100%): >600 instytutow; 113 narodowosci

Członkowie Obserwatorzy: komisja europejska, UNESCO, Indie, Japonia, Rosja, Turcja i USA; Najbardziej zaawansowany kandydat do członkostwa: Rumunia a po niej Izrael

Trochę historii 1951 - utworzenie tymczasowego ciała Conseil Européen pour la Recherche Nucléaire (CERN) 1953 - decyzja o zbudowaniu laboratorium w okolicach Genewy 17 maja 1953 - początek budowy 1957 - uruchomienie 1. akceleratora SC (Synchro-Cyclotron) 1959 – 1. przyspieszone protony z akceleratora PS (Proton - Synchrotron) 1968 – G. Charpak buduje wielodrutową komorę proporcjonalną, detektor rewolucjonizujący elektroniczne detektory cząstek 1971 - budowa 2. laboratorium wraz z SPS (Super Proton Synchrotron), uruchomienie 1. na świecie zderzacza protonów (ISR) 1983 - odkrycie bozonów W i Z 1989 - uruchomienie LEP (Large Electron-Positron Collider) 1990 - powstanie WWW

Trochę historii 1999 - pierwsze prace nad LHC, ogromnym zderzaczem protonów 2008 - LHC działa przez kilka tygodni 2010 – LHC działa pelną parą po naprawach związanych z problemem z 2008 2011 – ekscytujace wyniki z fabryki antymaterii i detektora neutrin 2011 – LHC pobija kolejne rekordy

CERN-owscy Nobliści: W tym i ten z polskimi korzeniami … 1984: Carlo Rubbia i Simon Van der Meer za odkrycie cząstek W i Z 1992: Georges Charpak, urodzony w Dąbrowicy za wkład w rozwój detektorów cząstek 1976: Sam Ting, za odkrycie mezonu J/y (jot/psi) 1988: Jack Steinberger za odkrycie neutrina mionowego

Co badamy? Z czego zbudowana jest materia? Jak cząstki oddziałują z otoczeniem? Jak powstał obecny Wszechświat? (historia wszechswiata zapisana jest na “magicznym kubku” z CERNu)

Co badamy? Oddziaływanie Nosniki oddziaływania grawitacyjne slabe elektromagnetyczne silne Nosniki oddziaływania

Przyspieszacze CERN LHC: fizyka cząstek elementarnych i struktura nukleonów 450GeV 7 TeV Neutrina Antymateria Fizyka jądrowa, Astrofizyka, Fizyka jądrowa (i ciała stałego) 1GeV 50 MeV protony Jądra ciężkie 4MeV/u 28GeV

LHC LHC to ogromny przyspieszacz protonów (i jonów ciężkich), z którego korzystają 4 główne eksperymenty: ATLAS, CMS, ALICE, LHCb Sa one bardzo dokładnym mikroskopem, który patrzy w głąb materii Cofają się w czasie, by odtworzyć chwile tuż po Wielkim Wybuchu

LHC Obwod: 27km Głebokosc: 70-100m Temperatura: -271.3°C (1.9 K) Energia: 3.5TeV/wiązka (max: 7TeV) Intensywnosc wiązki: >4e32 cm-2s-1

Eksperymenty LHC CMS

Eksperymenty LHC

Eksperymenty: antymateria Każda cząstka posiada swój lustrzany odpowiednik - antycząstkę, o tej samej masie i przeciwnym ładunku Ale czy antymateria do rzeczywiście idealne lustrzane odbicie ‘zwykłej materii’? Pomiary anty-wodoru mogą odpowiedziec na te pytania 2010: pierwszy spułapkowany antywodor 2011: masa antyprotonu znana prawie tak dobrze jak masa protonu

Eksperymenty: neutrina Neutrina to cząstki elementarne, które niezmiernie słabo oddziałują z otoczeniem, dlatego tak trudno je zaobserwować Od niedawna wiemy, że posiadają masę, ale nie wiemy jeszcze, ile ona wynosi Czy neutrina sa własnymi anty-cząstkami? 2010: Detector w GranSasso obserwuje 1 neutrino tauowe 2011: Neutrina mają predkosc wieksza niz predkosc swiatla c

Eksperymenty: fizyka jądrowa Mimo tego, że od ponad 80 lat wiemy, że jądro atomowe składa się z neutronów i protonów, to nadal nie rozumiemy do końca, w jaki sposób cząstki te oddziałują we wnętrzu jądra Eksperymenty działające w naszej ‘fabryce’ nietrwałych jąder ISOLDE mają za zadanie znaleźć odpowiedź na to pytanie Listopad 2010: nowy typ rozszczepiania jadrowego odkryty

Eksperymenty: antymateria i ciemna materia AMS (Alpha Magnetic Spectrometer ) Detektor anty-cząstek, który został niedawno umieszczony Na Międzynarodowej Stacji Kosmicznej 2011: AMS zostaje wyniesiony w przestrzen kosmiczną

Eksperyment offline: CAST CERN Axion Solar Telescope Korzysta z infrastruktury CERN i z prototypu magnesu dipolowego LHC Motywacja: poszukuje axionu, hipotetycznej cząstki, części ciemnej materii Detekcja: zmiana axionu w kwant X w silnym polu magnetycznym

I nie tylko: skanery PET PET: pozytronowa tomografia emisyjna Metoda diagnozowania w medycynie oparta o emisję anty-elektronu

I nie tylko: WWW 1990: w CERNie rodzi się Sieć

Czyli Sieć przyszłości: I nie tylko: GRID Czyli Sieć przyszłości: Cloud computing

I nie tylko: Medi-Pix Bardzo wydajne i wysoko-rozdzielcze detektory promieniowania Rentgenowskiego Przyszle zastosowanie w diagnozie i terapii

Moja przygoda z CERNem Lato 2001: udzial w CERN Summer Student Programme Czerwiec 2002: obrona pracy magisterskiej na UAM 2002-2006: doktorat na ISOLDE/CERN dla Uniwersytetu w Mainz Wrzesien 2006: obrona doktoratu w Mainz 2007-2009: postdoc: Marie Curie Fellow i CERN Fellow na ISOLDE/CERN 2010: postdoc dla MPIK-Heidelberg na ISOLDE/CERN Wrzesien 2010- : CERN staff na ISOLDE/CERN

Koniec ;)

Źródła www.cern.ch http://www.fuw.edu.pl/~ajduk/Public/Welcome.html

Co badamy?

Eksperymenty: ISOLDE “facility” Badania na “wolnych” wiązkach radioaktywnych Fizyka stosowana Implantowane próbki radioaktywne, izotopy do diagnozy i terapii Fizyka fazy skondensowanej i biofizyka Fizyka jądrowa Spektroskopia rozpadu jądrowego i reakcje Struktura jader Rozpady egzotyczne Fizyka “fundamentalna” Dedykowane pomiary mas i badania rozpadów Testy unitarności macierzy CKM, korelacje kierunku beta-jadro Fizyka atomowa Spektroskopia laserowa i pomiary mass Promienie i momenty jader, jądrowe energie wiązania Astrofizyka jądrowa Dedykowane badania rozpadów jądrowych i reakcji Nukleosynteza jądrowa Procesy słoneczne f(N,Z)

Eksperymenty: AD “facility” Antiproton Decelerator: spowalniacz anyprotonów Fizyka antyprotonów i anytywodoru Cel: zbadać energie przejścia 1s-2s w antywodorze Motywacja: Testy zachowania symetrii CPT (mała asymetria materia-antymateria wymaga rozszerzenia Modelu Standardowego i może wytłumaczyć brak antymaterii w obecnym Wszechświecie)

Ukierunkowana wiązka neutrin mionowych CNGS: neutrina Cern Neutrinos to Gran Sasso Ukierunkowana wiązka neutrin mionowych