Modele szeregów czasowych z tendencją rozwojową

Slides:



Advertisements
Podobne prezentacje
Excel Narzędzia do analizy regresji
Advertisements

ESTYMACJA PRZEDZIAŁOWA
Ocena dokładności i trafności prognoz
Estymacja. Przedziały ufności.
Analiza współzależności zjawisk
Jednorównaniowe modele zmienności
dr Małgorzata Radziukiewicz
Analiza wariancji jednoczynnikowa
Treść wykładu Wstęp Przewidywanie - prognoza Klasyfikacja prognoz
BUDOWA MODELU EKONOMETRYCZNEGO
Analiza szeregów czasowych
Analiza współzależności
CECHY CHARAKTERYSTYCZNE SZEREGU CZASOWEGO SZEREG CZASOWY jest zbiorem obserwacji zmiennej, uporządkowanych względem czasu (dni,
Analiza współzależności
Statystyczne parametry akcji
Ekonometria prognozowanie.
Statystyka w doświadczalnictwie
Podstawowe pojęcia prognozowania i symulacji na podstawie modeli ekonometrycznych Przewidywaniem nazywać będziemy wnioskowanie o zdarzeniach nieznanych.
Ekonometria wykladowca: dr Michał Karpuk
Analiza korelacji.
Prognozowanie na podstawie sezonowych szeregów czasowych
Prognozowanie na podstawie modelu ekonometrycznego
Prognozowanie na podstawie szeregów czasowych
Wprowadzenie do statystycznej analizy danych (SPSS)
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
Wykład 4. Rozkłady teoretyczne
Średnie i miary zmienności
Korelacja, autokorelacja, kowariancja, trendy
Hipotezy statystyczne
czyli jak analizować zmienność zjawiska w czasie?
i jak odczytywać prognozę?
Jak mierzyć i od czego zależy?
Ekonometria. Co wynika z podejścia stochastycznego?
Elementy Rachunku Prawdopodobieństwa i Statystyki
Analiza reszt w regresji
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Irena Woroniecka EKONOMIA MENEDŻERSKA - dodatek do W2
Prognozowanie z wykorzystaniem modeli ekonometrycznych
Badania Operacyjne i Ekonometria. Literatura podstawowa 1.M.Anholcer, H.Gaspars, A.Owczrkowski Przykłady i zadania z badań operacyjnych i ekonometrii.
Prognozowanie (finanse 2011)
1 Kilka wybranych uzupełnień do zagadnień regresji Janusz Górczyński.
Hipotezy statystyczne
Prognozowanie i symulacje
Finanse 2009/2010 dr Grzegorz Szafrański pokój B106 Termin konsultacji poniedziałek:
Elementy Rachunku Prawdopodobieństwa i Statystyki
Kilka wybranych uzupelnień
Henryk Rusinowski, Marcin Plis
Testowanie hipotez statystycznych
Przedmiot: Ekonometria Temat: Szeregi czasowe. Dekompozycja szeregów
Wnioskowanie statystyczne
D. Ciołek EKONOMETRIA – wykład 5
D. Ciołek EKONOMETRIA – wykład 6
Model trendu liniowego
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Logistyka – Ćwiczenia nr 6
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
Ekonometria stosowana Heteroskedastyczność składnika losowego Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Estymacja parametrów populacji. Estymacja polega na szacowaniu wartości parametrów rozkładu lub postaci samego rozkładu zmiennej losowej, na podstawie.
STATYSTYKA – kurs podstawowy wykład 13 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Modele nieliniowe sprowadzane do liniowych
STATYSTYKA – kurs podstawowy wykład 11
Estymacja parametryczna dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz.
Treść dzisiejszego wykładu l Metoda Najmniejszych Kwadratów (MNK) l Współczynnik determinacji l Koincydencja l Kataliza l Współliniowość zmiennych.
Niepewności pomiarów. Błąd pomiaru - różnica między wynikiem pomiaru a wartością mierzonej wielkości fizycznej. Bywa też nazywany błędem bezwzględnym.
Statystyka matematyczna
Statystyka matematyczna
Regresja wieloraka – służy do ilościowego ujęcia związków między wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą) Regresja.
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Korelacja i regresja liniowa
Zapis prezentacji:

Modele szeregów czasowych z tendencją rozwojową Modele analityczne

Modele tendencji rozwojowej stosujemy do prognozowania na podstawie szeregów czasowych, w których występują tendencja rozwojowa oraz wahania przypadkowe. Rolę zmiennej objaśniającej odgrywa zmienna czasowa. Nie jest ona bezpośrednią przyczyną zmian zachodzących w wartościach zmiennej prognozowanej, ale syntetyzuje wpływ bliżej nie znanych czynników, stwarza możliwość opisu tych zmian w sposób ilościowy.

Zapis modelu zatem będzie następujący: yt = f(t) + t, t = 1,........,n (1) lub yt = f(t) t, (2) Gdzie: f(t) - funkcja czasu, charakteryzująca tendencję rozwojową szeregu, nazywana funkcją trendu, t - zmienna losowa, charakteryzująca efekty oddziaływania wahań przypadkowych na zmienną prognozowaną, o wartości oczekiwanej równej 0 dla (1) lub 1 dla modelu (2) i skończonej wariancji.

Model zapisany równaniem pierwszym odpowiada sytuacji, gdy szereg czasowy stanowi sumę trendu i wahań przypadkowych (model addytywny), a model drugi – sytuacji, gdy szereg czasowy jest iloczynem trendu i wahań przypadkowych (model multiplikatywny) .

Modele analityczne Określenie funkcji trendu metodą analityczną polega na znalezieniu funkcji f(t), optymalnie, w świetle przyjętych kryteriów oceny, pasującej do wyrazów szeregu czasowego zmiennej prognozowanej. Do oceny dopasowania modelu do danych empirycznych używa się na ogół współczynnika determinacji R2.

Najczęściej spotykaną postacią funkcji trendu jest funkcja liniowa (3) Reprezentuje ona stały kierunek rozwoju danego zjawiska, wyznaczony przez współczynnik kierunkowy prostej . Parametr ten jest współczynnikiem stałego przyrostu wartości zmiennej prognozowanej w ciągu jednostki czasu.

W wielu przypadkach stosowanie liniowych funkcji trendu jest nieuzasadnione. Są sytuacje, w których należy zastosować funkcje o rosnących przyrostach: a) funkcja wykładnicza: (4) lub (5) Której właściwością są stałe stopy wzrostu wynoszące: dla modelu (4) lub dla modelu (5)

b) wielomian stopnia drugiego (parabola): którego zaletą jest duża elastyczność, wynikająca z posiadania trzech parametrów, dzięki czemu może on lepiej odzwierciedlać różne nieliniowe tendencje rozwojowe; c) funkcja potęgowa: która jest odpowiednia do opisu tendencji rozwojowych, które w układzie współrzędnych logarytmicznych wykazują przebieg liniowy.

W sytuacjach, w których wzrost wartości zmiennej prognozowanej przebiega coraz wolniej i zdąża do pewnego poziomu, zastosowanie mogą znaleźć funkcje o malejących przyrostach: a) logarytmiczna: b) potęgowa: c) wielomian stopnia drugiego (parabola)

Najczęściej spotykana metoda estymacji parametrów wymienionych funkcji to metoda najmniejszych kwadratów. W celu oszacowania nie znanych ocen wartości parametrów modeli liniowych używamy wzorów: gdzie:

Po wyborze postaci funkcji trendu oraz wyznaczeniu ocen jej parametrów dokonuje się oceny jakości otrzymanego modelu. Żeby użyć modelu do budowy prognoz trzeba założyć: a) stabilność relacji strukturalnych w czasie,oznaczającą, że zarówno postać analityczna modelu, jak i wartość ocen jego parametrów nie ulegną zmianie w przedziale czasu, dla którego wyznacza się prognozę, b) stabilność rozkładu składnika losowego, umożliwiającą ocenę błędu ex ante prognozy.

Przyszłą wartość zmiennej uzyskuje się przez ekstrapolację funkcji trendu, tj. przez podstawienie do modelu w miejsce zmiennej czasowej numeru momentu lub okresu - T, na który wyznacza się prognozę: Jest to prognoza punktowa. Do oceny jej jakości używa się błędu prognozy ex ante, który w przypadku liniowej funkcji trendu jest dany wzorem:

gdzie s - odchylenie standardowe reszt dane wzorem: yt - rzeczywista wartość zmiennej Y w momencie lub okresie t; - teoretyczna wartość zmiennej Y wynikająca z modelu w momencie lub okresie t; - średnia wartość zmiennej Y w szeregu czasowym o długości n; n - liczba obserwacji m - liczba zmiennych objaśniających

Do oceny dopasowania modelu do wartości rzeczywistych zmiennej prognozowanej można się posłużyć: a) współczynnik determinacji b) standardowy błąd oceny modelu

Często oprócz wyznaczenia prognozy punktowej konstruuje się przedział prognozy (prognozę przedziałową), tj. przedział liczbowy, do którego ze z góry zadanym prawdopodobieństwem (p), zwanym wiarygodnością prognozy, należeć będzie przyszła wartość prognozowanej zmiennej. Gdzie: u - współczynnik związany z wiarygodnością prognozy, rozkładem zmiennej prognozowanej oraz długością szeregu czasowego (u>0), p - wiarygodność prognozy.

Jeżeli w procesie weryfikacji hipoteza o normalnym rozkładzie reszt modelu nie została odrzucona, to wartość współczynnika u odczytuje się z tablic rozkładu normalnego (dla n>30) lub z tablic rozkładu t-Studenta dla n-2 stopni swobody i prawdopodobieństwa 1-p. Jeżeli hipoteza ta została odrzucona lub nie była weryfikowana, to wartość współczynnika u może być wyznaczona z nierówności Czebyszewa: Gdzie: - wartość oczekiwana zmiennej prognozowanej Y, - odchylenie standardowe zmiennej prognozowanej Y.

Przykład 1 Wielkość sprzedaży wędzisk spinningowych (w szt.) u jedynego przedstawiciela firmy Shimano na Podlasie w poszczególnych półroczach lat 2000-2005 w województwie podlaskim kształtowała się następująco: 105 115 118 129 128 130 139 141 146 156 160 164 Przyjmując, że w latach 2006-2007 czynniki i ich oddziaływanie kształtujące wielkość sprzedaży nie ulegną zmianie, należy wyznaczyć prognozy punktowe i przedziałowe sprzedaży wędzisk na trzy kolejne półrocza. Przedstawiciel firmy Shimano postawił warunki: - prognoza może być obarczona błędem względnym co najwyżej 4% - wiarygodność prognozy przedziałowej ma wynosić 95%.

Oszacowana funkcja trendu ma postać: W latach 2000-2005 sprzedaż wędzisk spiningowych wzrastała przeciętnie z półrocza na półrocze o 5,1 sztuk. Dopasowanie linii trendu do danych empirycznych było bardzo dobre, oszacowany model w 98% wyjaśniał zmienność wielkości sprzedaży. Przeciętne odchylenie wartości empirycznych od linii trendu wynosiło 2,8 sztuk.

Konstrukcja prognozy punktowej: Błędy ex ante obliczonych prognoz wynoszą:

Względne błędy ex ante wynoszą: Wszystkie otrzymane błędy względne są mniejsze od z góry zakładanego (4%), tak więc wszystkie prognozy są dopuszczalne i w świetle postawionych warunków powinny zostać zaakceptowane przez zleceniodawcę.

Prognoza przedziałowa: Sytuacja A Hipoteza o normalnym rozkładzie reszt nie była weryfikowana lub hipoteza ta została odrzucona, wówczas wartość współczynnika u obliczamy ze wzoru: W naszym przykładzie wiarygodność prognozy została ustalona na p=0,95, zatem

Prognoza przedziałowa dla T=13 ma postać: Oznacza to, że z prawdopodobieństwem 95% liczba sprzedanych wędzisk Shimano w województwie podlaskim w I półroczu 2001 roku będzie zawierać się w przedziale od 154 do 184 sztuk. Odbiorca stwierdził, ze podany przedział jest za szeroki, a więc mało precyzyjnie określa przyszłą sprzedaż. W związku z tym przetestowano hipotezę o normalności rozkładu reszt modelu i nie było podstaw do jej odrzucenia.

Sytuacja B Rozkład reszt jest normalny. Wartość współczynnika u odczytujemy z tablic rozkładu t-Studenta dla n-2 stopni swobody i . W naszym przypadku mamy: stopni swobody oraz a więc Prognoza przedziałowa dla T=13 ma postać: Odbiorca uznał prognozę, że w 13 okresie z prawdopodobieństwem 0,95 sprzeda od 162 do 176 sztuk wędzisk, za przydatną.

W analogiczny sposób obliczono prognozy przedziałowe dla T=14 oraz T=15. Wartość współczynnika u nie zmienia się. Wartość bezwzględnego błędu ex ante z okresu na okres jest wyższa: T=14 T=15

Przykład 2 W styczniu 2006 roku pojawił się nowy dystrybutor sprzętu firmy Shimano w Białymstoku. Czy można wykorzystać model z przykładu 1 do budowy prognozy na następny okres, tj. na II półrocze 2007 r. Zebrano informacje o wartościach rzeczywistych zmiennej z przykładu 1 w obu półroczach roku 2006 i I półroczu roku 2007. Wynosiły one odpowiednio: 142, 145 i 151 sztuk.

Pojawienie się nowego konkurenta powoduje, że nie można wykorzystać modelu do konstrukcji prognozy na następny okres, a przynajmniej nie można tego uczynić bezpośrednio, tzn. stosując prognozy nieobciążonej. Prognozy wyznaczone na okresy 13, 14 i 15 były nietrafne, mimo iż spełniały wymagania dopuszczalności. Przy konstrukcji prognoz przyjęto niezmienność charakteru zmian prognozowanej zmiennej. Pojawienie się nowego konkurenta stanowiło zmianę jakościową, która naruszyła ten dotychczasowy charakter zmian.

Względne błędy prognoz ex post wyniosły: Średni względny błąd tych prognoz wyniósł:

Zakładając, że przyczyny powodujące odchylenia ostatnich danych rzeczywistych od prognoz utrzymają się (konkurent utrzyma się na rynku), a wpływ pozostałych czynników pozostanie niezmienny, do budowy prognozy na II półrocze 2007 r. można wykorzystać model oszacowany w przykładzie 1, ale otrzymaną prognozę należy potraktować jedynie jako wstępną i skorygować o pewną wartość - poprawkę. Należy zatem skorzystać z reguły podstawowej z poprawką.

Wyznaczone w przykładzie 1 prognozy były wyższe niż zaobserwowane wartości rzeczywiste i różniły się od nich w okresach 13,14 i 15 odpowiednio o: 27, 29 i 28 sztuk. Poprawkę p szacujemy w następujący sposób: W naszym przykładzie: Otrzymana poprawka informuje o tym, że pojawienie się konkurenta na rynku spowodowało odchylenie się wartości zmiennej prognozowanej od dotychczasowej tendencji w badanym okresie średnio o 28 sztuk.

Konstrukcja prognozy Prognoza wstępna - wyznaczana z ekstrapolacji funkcji trendu: Prognoza ostateczna - po uwzględnieniu poprawki: