Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.

Slides:



Advertisements
Podobne prezentacje
Na szczycie równi umieszczano obręcz, kulę i walec o tych samych promieniach i masach. Po puszczeniu ich razem staczają się one bez poślizgu. Które z tych.
Advertisements

Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Dynamika bryły sztywnej
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
PRACA , moc, energia.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Ruch układów złożonych
Dynamika Siła – oddziaływanie, powodujące ruch ciała.
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
DYNAMIKA.
UKŁADY CZĄSTEK.
Układy cząstek.
Wykład 4 dr hab. Ewa Popko
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Prędkość kątowa Przyśpieszenie kątowe.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
1.Praca 2. Siły zachowawcze 3.Zasada zachowania energii
Układ wielu punktów materialnych
Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3
BRYŁA SZTYWNA.
Wykład V dr hab. Ewa Popko
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
(5-6) Dynamika, grawitacja
Ruch układów złożonych środek masy bryła sztywna ruch obrotowy i toczenie.
Test 2 Poligrafia,
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 5
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład bez rysunków Ruch jednostajny po okręgu
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
ANALIZA DYNAMICZNA MANIPULATORÓW JAKO MECHANIZMÓW PRZESTRZENNYCH
Z Wykład bez rysunków ri mi O X Y
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Przygotowanie do egzaminu gimnazjalnego
Dynamika.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Dynamika ruchu płaskiego
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Ruch układów złożonych
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Dynamika punktu materialnego
Dynamika ruchu obrotowego
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
FIZYKA KLASA I F i Z Y k A.
Dynamika bryły sztywnej
Fizyka Program przedmiotu: 30 godzin wykładu - dr Krystyna Chłędowska 15 godzin ćwiczeń audytoryjnych (semestr zimowy) 15 godzin laboratorium (semestr.
Prowadzący: dr Krzysztof Polko
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
Prowadzący: dr Krzysztof Polko
Prawa ruchu ośrodków ciągłych
Symulacje komputerowe
Zapis prezentacji:

Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca – iloczyn skalarny wektorów siły i przemieszczenia x yFpFp r1r1 r2r2 rr Drogę rozkładamy na N odcinków liniowych takich, że na każdym z nich

Pracę definiujemy jako: a) Stała siła W

b) Siła zmienna, np. rozciągamy sprężynę: W

Prawo zachowania energii prawa zachowania są niezależne od własności toru, a często również od własności danej siły prawa zachowania mają zastosowanie nawet wtedy, gdy siły są nieznane prawa zachowania stanowią dogodną pomoc w rozwiązywaniu zagadnienia ruchu cząstki. Cząstka o masie m nie jest poddana działaniu żadnej siły. W chwili t = 0 do cząstki przyłożono siłę

energia kinetyczna cząstki praca wykonana przez przyłożoną siłę jest równa zmianie energii kinetycznej cząstki praca wykonana na cząstce przez siłę

Siły zachowawcze x y A B Praca wykonana przez siłę zachowawczą po drodze zamkniętej jest równa zeru. Praca wykonana przez siłę zachowawczą nie zależy od kształtu toru.

Energia potencjalna Przykładamy do ciała siłę F p równoważącą wszystkie inne siły działające na ciało. Wówczas E k = const. Praca wykonana przez siłę F p podczas przenoszenia tego ciała z punktu A do punktu B pola zachowawczego = zmianie energii potencjalnej ciała Energia potencjalna ciała w danym punkcie pola wyznaczona jest z dokładnością do stałej addytywnej

Jeśli siłę przyłożoną zastąpimy siłą rzeczywiście działającą na ciało to energia potencjalna ciała w danym punkcie pola lub względem punktu położonego w nieskończoności Jeśli punkt A  , wówczas i energia potencjalna ciała względem nieskończoności

Zasada zachowania energii mechanicznej Na cząstkę działa siła suma sił zachowawczych suma sił niezachowawczych Praca wykonana przez siłę

Praca wykonana przez dowolne siły podczas przenoszenia ciała z punktu A do B = zmianie energii kinetycznej ciała Praca wykonana przez siły zachowawcze = zmianie energii potencjalnej ciała

Zmiana całkowitej energii mechanicznej układu równa jest pracy sił niezachowawczych. Jeśli na ciało (układ ciał) działają tylko siły zachowawcze wówczas energia mechaniczna jest stała. energia całkowita w punkcie B pola energia całkowita w punkcie A pola (filmy 2)

Dynamika ruchu obrotowego: punktu materialnego bryły sztywnej Bryła sztywna – zbiór punktów, przy czym dla dowolnych dwóch punktów A i B ich wzajemna odległość r AB jest stała w czasie, niezależnie od przyłożonej siły. A B r AB

Moment siły ramię siły kierunek działania siły

dla punktu materialnego Moment pędu punktu materialnego

II zasada dynamiki dla ruchu obrotowego wokół stałej osi obrotu Przyspieszenia kątowego jakie uzyskuje punkt materialny jest proporcjonalne do momentu działającej siły. Współczynnikiem proporcjonalności jest moment bezwładności. Dla punktu materialnego

Jeśli na punkt materialny działa zewnętrzny moment siły, to zmienia się moment pędu tego punktu materialnego

Układy punktów materialnych Dla układu zawierającego n punktów materialnych zapiszemy: oraz Zmiana całkowitego momentu pędu układu punktów materialnych w jednostce czasu względem początku inercjalnego układu odniesienia jest równa sumie zewnętrznych momentów sił działających na układ

moment bezwładności układu punktów materialnych względem danej osi obrotu moment bezwładności bryły sztywnej względem danej osi obrotu Energia kinetyczna i-tego punktu materialnego Energia kinetyczna układu punktów materialnych Energia kinetyczna w ruchu obrotowym

Twierdzenie Steinera

Cylinder obraca się wokół punktu P z prędkością kątową w danej chwili – jest to więc czysty ruch obrotowy. Energia kinetyczna takiego ruchu

Z twierdzenia Steinera wynika a więc energia kinetyczna cylindra wynosi Iloczyn jest prędkością liniową środka masy cylindra względem nieruchomego punktu P

Prędkość środka masy względem punktu P jest taka sama jak prędkość punktu P względem środka masy stąd prędkość kątowa środka masy wokół punktu P jest taka sama jak prędkość kątowa punktu P wokół środka masy energia kinetyczna obracającego się cylindra energia kinetyczna cylindra poruszającego się ruchem postępowym

Dowolny punkt znajdujący się na obwodzie walca obraca się z prędkością v i z taką samą prędkością porusza się prostoliniowo

Ogólna postać II zasady dynamiki dla ruchu obrotowego Szybkość zmian momentu pędu jest równa momentowi siły analogicznie do

Zasada zachowania momentu pędu Moment pędu jest stały gdy nie działa zewnętrzny moment siły. Związek pomiędzy krętem a prędkością kątową Jeśli moment pędu jest zachowany, to