Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Modelowanie układu nerwowego (computational neurosicence) Modelowanie układu nerwowego zajmuje sie badaniem obliczeniowych wlasnosci układu nerwowego.

Podobne prezentacje


Prezentacja na temat: "Modelowanie układu nerwowego (computational neurosicence) Modelowanie układu nerwowego zajmuje sie badaniem obliczeniowych wlasnosci układu nerwowego."— Zapis prezentacji:

1 Modelowanie układu nerwowego (computational neurosicence) Modelowanie układu nerwowego zajmuje sie badaniem obliczeniowych wlasnosci układu nerwowego. Wlasnosci te sa poznawane poprzez rozwijanie matematycznych teorii i modeli obliczeniowych oraz badanie ich metodami analitycznymi i poprzez symulacje numeryczne.

2 Modelowanie układu nerwowego - początki Pierwsze prace z modelowania matematycznego neuronów siegają poczatków XX wieku: Louis Lapicque - Integrate and fire neuron (1907) McCulloch and Pitts – Threshold Logic Unit (1943) Model Hodgkina-Huxleya (1952) Wilfrid Rall - teoria kablowa zastosowana do neuronów - modele kompartmentowe (1957) David Marr – obliczeniowe teorie działania móżdżku (1969), kory mózgowej (1970) i hipokampa (1971).

3 Modele integrate and fire Obwod integrate-and-fire: perfect integrate-and-fire model składa sie z kondensatora, progu i przelacznika. Gdy napiecie przekracza prog, generowany jest impuls, a obwod jest zamykany na pewien czas, w ktorym napiecie wynosi 0. W wersji leaky, obwod zawiera rowniez opornik, przez ktory uplywa prad, co odpowiada prądom uplywu (leak) w neuronach.

4 Modele integrate and fire non-leaky leaky Adapting integrate and fire Realistyczny model kompartmentowy komórki piramidalnej V warstwy kory Model leaky integrate and fire

5 Modele integrate and fire Model leaky integrate and fire Porownanie zachowania neuronu rzeczywistego (gruba linia) i neuronu integrate-and- fire (cienka linia). Oba neurony byly pobudzane przez fluktuujace wejscie prądowe. Flukutuacje podprogowe sa dobrze odtworzone razem z momentami wystapienia potencjalow czynnosciowych, za wyjatkiem paru dodatkowych lub brakujacych potencjalow (strzałki). Neuron rzeczywisty

6 Neuron McCullocha-Pittsa Neuron McCullocha-Pittsa jest bardzo uproszczonym matematycznym modelem biologicznego neuronu. Posiada on wiele wejść i jedno wyjście. Każdemu z wejść przyporządkowana jest liczba rzeczywista - tak zwana waga wejścia. Wartość na wyjściu neuronu obliczana jest jako suma iloczynów wartości x i podanych na wejścia i wag w i wejść. Na wyjsciu podawana podawana jest wartość funkcji aktywacji f(s) dla obliczonej sumy. Neuron McCullocha-Pittsa jest podstawowym elementem sztucznych sieci neuronowych. Dwupoziomowe układy neuronow McCullocha-Pittsa umożliwiaja realizaje dowolnych operacji logicznych. Zmienne wartosci wag umozliwaja ‘uczenie’.

7 Neuron McCullocha-Pittsa Operacje AND i OR realizowane przez nuron McCullocha-Pittsa.

8 Rozszerzony model Hodgkina-Huxleya Obwod zastepczy reprezentujacy model blony neuronalnej zawierajacej roznego rodzaju kanaly zalezne od napiecia oraz kanaly pasywne. Kazdy kanał składa sie z oporu (przewodnictwa), oraz baterii reprezentujacej potencjal rownowagi dla jonu plynacego przez kanal.

9 Teoria kablowa W teorii kablowej aksony i dendryty są traktowane jako cylindry złożone z pojemności c m i oporu r m połączonych równolegle. Wzdłuż włókna występuje opór r i połączony szeregowo. Teoria kablowa umożliwia realistyczne symulacje procesów w dendrytach i aksonach neuronów.

10 Poziomy modelowania układu nerwowego Kanały jonowe – poziom atomowy/molekularny Dyfuzja jonów/neuroprzekaźników - poziom atomowy/molekularny Stochastyczne zachowanie kanałów jonowych – procesy Markowa Generacja potencjałów czynnosciowych – poziom pojedynczych neuronow (modele punktowe/kablowe/wielokompartmentowe) Wzorce generacji potencjałów czynnosciowych – poziom pojedynczych neuronow Ciagi potencjałów czynnosciowych – procesy punktowe Sieci neuronowe – uproszczone/realistyczne – poziom od malych sieci do funkcji ukladu nerwowego Sieci neuronowe + plastyczność synaptyczna - poziom od malych sieci do funkcji ukladu nerwowego Modele wieloskalowe – poziom populacje neuronow/caly mozg Modele mean field i modele globalne – poziom populacje neuronow/caly mozg Z: The HBP Pilot Report, April 2012

11 Wieloskalowe modele układu nerwowego Diagram mikroobwodu korowo - wzgorzowego Symulacja fMRI. Widoczne antyskorelowane klastry aktywnosci (czerwony-niebieski), co odpowiada eksperymentalnym wynikom u ludzi IZHIKEVICH MODEL: 10 8 neuronów, 22 rodzaje komórek, 5*10 8 synaps wraz z plastycznością. W modelu samorzutnie powstaje aktywność spontaniczna mózgu oraz rytmy (np. gamma).

12 Wieloskalowe modele układu nerwowego BLUE BRAIN: rozpoczęty w 2005 r, pod kierownictwem Henryego Markrama, zespół neuronaukowców i informatyków z École Polytechnique Fédérale de Lausanne, w Szwajcarii, przeprowadzil na supercomputerze IBM symulacje 1cm 2 kory mózgowej.

13 Wieloskalowe modele układu nerwowego Superkomputer stosowany w projekcie Blue Brain składa sie z 8000 procesorow, dzialajacych z szybkoscia 23 tryliony operacji (typu floating-point) na sekunde (23TFlops). Kazdy procesor sluzy do symulacji jednego lub dwoch neuronow. Blue Gene superkomputer (projekt IBM)

14 Wizualizacja wynikow The IBM Brain Wall – narzędzie do wizualizacji jednoczesnej aktywności 262,144 neuronów. Każdy neuron jest reprezentowany przez pojedynczy pixel. Większe sieci mogą być wizualizowane poprzez grupowanie wielu neuronów w pixele.

15 Wieloskalowe modele układu nerwowego iPAD4 PlayStation4 HUMAN BRAIN PROJECT: celem projektu jest symulacja ludzkiego mózgu (budzet 1,2 biliona Euro). Na razie: realistyczne symulacje 10 6 neuronów i synaps. Dane (w tym połączenia) oparte na mózgu gryzoni. Spodziewany efekt: “tracking the emergence of intelligence”. HBP jest kontynuacja projektu Blue Brain. W projekcie Human Brain Project bierze udział zespół kierowany przez przez dr. hab. Piotra Bogorodzkiego z Wydziału Elektroniki i Technik Informacyjnych Politechniki Warszawskiej. Zespół uczestniczy w części projektu dotyczącej tworzenia bazy danych zawierającej dane obrazowe, genetyczne, kliniczne oraz behawioralne. x x Computing speed Memory requirements

16 Mózg vs. komputer

17 DARPA SyNAPSE Program SyNAPSE - Systems of Neuromorphic Adaptive Plastic Scalable Electronics Projekt 2008 – 2016 (budzet dotychczasowy 2013, 102 miliony USD ) Cel: układ mikroprocesorów odtwarzajacy neuronow, synaps, pobór mocy: 1 kW, objętość: 2 litry ~ ludzki mózg (pobor mocy 20 W). Do zastosowania w robotach. Ostatni raport (IBM Research Division 2013 technical report): model zlozony z 5*10 11 neuronów (5 razy więcej niż ludzki mózg). Maciez 4x4 układów scalonych opracowanych przez SyNAPSE. Każdy układ składa się miliona ‘neuronow’ i 256 milionow polaczen miedzy nimi. Sila polaczen pomiedzy neuronami moze byc modyfikowana na zasadach podobnych jak w neuronach rzeczywistych. Uklad 5.4 biliona tranzystorów opracowany w technologii 28nm jest jednym z najbardziej zlozonych ukladow scalonych kiedykolwiek wyprodukowanych. DARPA - Defense Advanced Research Projects Agency

18 Sztuczny mózg – ogólna konfiguracja


Pobierz ppt "Modelowanie układu nerwowego (computational neurosicence) Modelowanie układu nerwowego zajmuje sie badaniem obliczeniowych wlasnosci układu nerwowego."

Podobne prezentacje


Reklamy Google