Pobierz prezentację
1
Przetwarzanie obrazów
Wykład 4 Filtracja obrazu Dr inż. Wojciech Bieniecki Instytut nauk ekonomicznych i informatyki PWSZ PŁOCK
2
Gdzie potrzebujemy filtrowania
Poprawa jakości obrazu - Łatwiejsze oglądanie i analiza ręczna - Przekształcenie w celu zastosowanie metod segmentacji (np. poprzez wykrywanie krawędzi) - Usuwanie szumu Odtworzenie obrazu (restoration) - Nadzorowana rekonstrukcja uszkodzonego obrazu Segmentacja, klasyfikacja, analiza - Operacje morfologiczne na obrazach binarnych - Przekształcenia częstotliwościowe do celów analizy obrazu
3
Taksonomia metod filtrowania
FILTRACJA DZIEDZINA PRZESTRZENNA DZIEDZINA CZĘSTOTLIWOŚCI LINIOWA NIELINIOWA RANGOWE MORFOLOGIA MIESZANE
4
Filtracja - przypomnienie
Filtracja jest przykładem operacji globalnej f I’ I 4
5
Czym jest filtr liniowy
Jest funkcją, która jest: addytywna: jednorodna: gdzie: - Funkcja filtru - obrazy - Wartość rzeczywista 5
6
Techniki filtracji obrazu
Filtracja w dziedzinie częstotliwości Obraz wyjściowy g(x,y) f(x,y) Obraz wejściowy Macierz l. zespolonych F(u,v) Macierz l. zespolonych G(u,v) IFFT FFT X H(u,v) Re(F) Im(F) Macierz l. zesp.
7
Czym jest splot (konwolucja)
Splot funkcji definiujemy równaniem: Przydatne własności splotu funkcji: Łączność: Możemy zastąpić filtr o dużej masce poprzez kilka filtrów o mniejszych maskach rozdzielność: Filtrację dla linii poziomych i pionowych możemy wykonywać osobno i wyniki łączyć 7
8
Przykład splotu funkcji jednowymiarowych
Zastosowanie – tłumienie szumu 8
9
Splot w przestrzeni dyskretnej
Obraz cyfrowy jest dwuwymiarową, dyskretną funkcją (nie ciągłą). Splot definiujemy jako: Filtry definiujemy jako tablice wag w(i,j). Wagi wraz z punktami obrazu f(m-i, n-j) które należą do jądra (kernel) K są używane do obliczenia g(m,n) 9
10
Filtracja w przestrzeni dyskretnej…
… jest więc w praktyce operacją lokalnego sąsiedztwa f I I’ 10
11
Splot w przestrzeni dyskretnej
Wagi w(i,j) są zwykle zbiorem liczb całkowitych w celu przyspieszenia obliczeń. W wyniku powstanie wartość, która nie spełnia poniższego warunku normalizacji: Jeżeli wszystkie wartości w(i,j) są dodatnie, normalizacja polega na podzieleniu wyniku przez sumę wag: W przeciwnym wypadku normalizację wartości przeprowadzamy po przefiltrowaniu całego obrazu 11
12
Filtracja: przestrzenna i częstotliwościowa
obraz wejściowy obraz wynikowy g(x,y) f(x,y) h(u,v)
13
Dziedzina przestrzenna – przybliżenie dla obrazów cyfrowych
13
14
Splot – efekty brzegowe
14
15
Splot – efekty brzegowe
1. Ignorujemy punkty brzegowe – wynikowy obraz będzie mniejszy 2. Ignorujemy punkty brzegowe – wartość koloru interpolujemy lub kopiujemy z obrazu wejściowego 15
16
Splot – efekty brzegowe
3. Rozszerzamy obraz wejściowy. Potrzebne punkty uzyskujemy poprzez interpolację lub kopiowanie punktów brzegowych or: 4. Przygotowujemy inne jądro (maskę) dla brzegów obrazu 16
17
Splot – algorytm ogólny
17
18
Maski splotów – filtry liniowe
Filtry te są używane np. do tłumienia szumu. Najprostszą maską jest maska uśredniająca. 1 Obraz wejściowy Obraz zaszumiony Małe zakłócenia znikają Obraz przefiltrowany Zaszumiony obraz po filtracji Wadą jest rozmycie konturów obrazu i zakłócenie ich kształtu. 18
19
Splot- maska uśredniająca
Wynik uśredniania naturalnego obrazu Lena (256x256) pixel
20
Maski splotu – filtr Gaussa
Filtr Gaussa wprowadza mniej niepożądanych zakłóceń do obrazu wynikowego Maska uśredn.3x3 Maska Gaussa Maska uśredn. 5x5 Charakterystyka częstotliwościowa filtrów splotowych 20
21
Maski splotowe – filtr Gaussa
Definicja filtru Gaussa 2 4 8 16 1 4 2 1 8 1 2 4 Przybliżenia maski Gaussa dla różnych wartości d0 21
22
Wynik filtracji obrazu (uśrednienie i Gauss)
1 1 2 4 22
23
Obraz LENA. Wielkość 256x256 pikseli, splot maską Gaussa 15x15
Koszt obliczeniowy Wielkość maski – siła filtru Zwiększenie wielkości maski – dramatycznie zwiększa złożoność obliczeniową Dla obrazu 512 x 512 px: 3x3 -> 2,4 mln operacji 5x5 -> 6,5 mln operacji 7x7 -> 16,5 mln operacji Zamiast tego – można użyć transformacji FFT! Obraz LENA. Wielkość 256x256 pikseli, splot maską Gaussa 15x15 23
24
Filtry górnoprzepustowe i gradienty
Filtry górnoprzepustowe uwydatniają zmiany jasności obrazu, które mogą być: Wzorem tekstury krawędziami brzegami konturem liniami Filtry górnoprzepustowe mogą służyć do wyostrzenia obrazu 24
25
Gradient Roberta wersja 1 wersja 2
-1 1 -1 1 wersja 1 wersja 2 Zwróć uwagę, że wartość wynikowa nie koniecznie będzie z przedziału [0,255]. Po wykonaniu filtracji całego obrazu należy wykonać normalizację (liniowe sklalowanie jasności) 25
26
Gradient Roberta Obraz wejściowy
Obraz wyjściowy – wartości przeskalowano do przedziału [0, 255] Obraz wyjściowy – moduły wartości przeskalowano do przedziału [0, 255] 26
27
Gradient Roberta dla obrazu naturalnego
Wynik - przeskalowano Obraz wejściowy LENA Wynik – przeskalowano moduły wartości 27
28
Gradient Roberta – kierunki
Filtr jest kierunkowy. Głównym kierunkiem jest kąt 45° -1 1 -1 1 28
29
Gradient Prewitta Filtr również jest kierunkowy. Główne kierunki to poziomy i pionowy. -1 1 -1 1 29
30
Gradient Prewitta – obraz naturalny
-1 1 -1 1 30
31
Gradient Sobela Jest to filtr gradientowy o dużym wzmocnieniu w lokalnym sąsiedztwie 2 1 -1 -2 1 2 -1 -2 1 2 -1 -2 b) c) a) 1 -1 -2 2 -1 1 2 -2 h) d) -1 -2 1 2 -1 -2 1 2 -2 -1 1 2 f) g) e) 31
32
Gradient Sobela – obraz sztuczny
h) d) g) f) e) 32
33
Gradient Sobela – obraz naturalny
c) h) d) g) f) e) 33
34
Detekcja narożników Lewo - góra góra Prawo - góra lewy prawy
1 -1 -2 1 -2 -1 1 -2 -1 Lewo - góra góra Prawo - góra 1 -1 -2 -1 1 -2 lewy prawy 1 -1 -2 -1 1 -2 -1 1 -2 Lewy - dół dół Prawy - dół 34
35
Charakterystyki częstotliwości dla filtrów Laplace’a
Laplasjan Jest używany, gdy nie zależy nam na określeniu kierunku zmiany jasności Maska Laplace’a jest przybliżeniem idealnego filtru górnoprzepustowego 1 -8 1 4 -20 35 Charakterystyki częstotliwości dla filtrów Laplace’a
36
Wyniki splotu Laplace’a
1 4 -20 36
37
Filtr wyostrzający -1 -4 A+20 -1 -4 20 A Mnożenie = + Jest to przykład kombinacji liniowej filtrów liniowych LAPLACE Obaz wejściowy LENA A = 20 A = 11 A = 4 37
38
Kombinacje nieliniowe
1. Kombinacje nieliniowe filtrów liniowych są filtrami nieliniowymi 2. Nieliniowe kombinacje gradientów mogą dać lepsze wyniki w odtwarzaniu brzegów, linii, konturów niż filtry Laplace’a 3. Pomysł polega na przefiltrowaniu obrazu przy użyciu ortogonalnych masek i obliczeniu kombinacji otrzymanych obrazów 4. Taka kombinacja nieliniowa odtwarza gładkie kontury, bez względu na ich kierunki 38
39
Detekcja konturu = = = Alternatywnie: I IH IV IG 39 -1 1 2 -2 -1
1 2 -2 = IV IG -1 -2 1 2 = = Alternatywnie: 39
40
Przykłady detekcji konturu
LAPLACE 40
41
Taksonomia filtrów nieliniowych
NIELINIOWE KOMBINACJE MORFOLOGICZNE RANGOWE Mediana Minimum Erozja Dylatacja Maximum Otwarcie Zamknięcie Definicja filtru nieliniowego nie może być przeniesiona do dziedziny częstotliwości Top hat Bottom hat Wynik działania filtru zależy od typu obrazu i rodzaju zakłóceń. 41
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.