Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałAron Pietrusiak Został zmieniony 10 lat temu
1
Analiza komórek w cytofluorymetrii przepływowej przy pomocy narzędzi Data Mining serwera SQL 2008 R2 Marcin Szeliga Trener & Konsultant marcin@wss.pl
2
MarcinSzeliga:Bio.ToPP() +15 lat doświadczenia z serwerem SQL Trener & konsultant Autor książek i artykułów SQL Microsoft Most Valuable Professional (od 2006) Microsoft Specialist (od 2000)
3
Cele Wykazanie przydatności automatycznej analizy danych z FCM Segmentacja danych z FCM pod kątem obecności nieprawidłowych subpopulacji komórek Automatyczna klasyfikacja znalezionych subpopulacji i ich opis statystyczny Wyszukiwanie komórek nie pasujących do klastrów komórek prawidłowych, z ich oceną ilościową i statystyczną co ma znaczenie w monitorowaniu leczenia i ocenie tzw. choroby resztkowej Ocena zmian subpopulacji komórek u tego samego pacjenta w trakcie leczenia
4
Szczegóły Dane źródłowe z 9-kanałowego cytofluorymetru o 18-bitowej dokładności: 17 pacjentów z białaczką (2 266 440 komórek) 17 pacjentów w reemisji (1 248 712 komórek) Oprócz pacjentów w remisji oraz z ostrą białaczką limfoblastyczną, dane źródłowe pochodziły również od pacjentów na różnym etapie leczenia u niektórych z nich procent komórek białaczkowych nie przekraczał 3%
5
Dane treningowe Eliminacja błędów FSCA < 250000 SSCA < 200000 Pierwsza segmentacja (FSCA, SSCA, CD19) Klastry CD19+ i CD19++ (Leukemia 67% Remission 36%) Około 80% Klastry CD19- Właściwa segmentacja (Wszystkie zmienne) Około 15% Bramkowanie
6
Właściwa segmentacja (Wszystkie zmienne) Klastry typowych komórek Klastry komórek aberrantnych Klastry komórek mieszanych Klasyfikacja Komórki aberrantne Wykres Komórki typowe
7
Dane pacjenta Eliminacja błędów FSCA < 250000 SSCA < 200000 Sprawdzenie przynależności do klastrów CD19+ lub CD19++ 65% Komórki CD19- Wykrycie nietypowych komórek 1% Komórki nietypowe 30% Sprawdzenie przynależności do głównych klastrów Klasyfikacja
8
Sprawdzenie przynależności do głównych klastrów Klastry komórek białaczkowych Klastry komórek mieszanych Klastry typowych komórek Klasyfikacja Komórki typowe Komórki białaczkowe Klasyfikacja
9
Wnioski Szukanie klastrów tworzonych przez zdrowe komórki pozwoliło osiągnąć wyniki co najmniej tak samo dobre jak dotychczas stosowane metody ręcznego bramkowania Możliwość określenia prawdopodobieństwa przynależności danej komórki do znalezionych wcześniej klastrów Automatyczna klasyfikacja komórek jako zdrowych lub białaczkowych z ponad 80% dokładnością i prawie 100% wiarygodnością Możliwość określenie powodu i stopnia nietypowości komórek Możliwość oceny i identyfikacji zmian subpopulacji komórkowych w trakcie leczenia białaczki
10
Analiza komórek w cytofluorymetrii przepływowej przy pomocy narzędzi Data Mining serwera SQL 2008 R2 Marcin Szeliga Trener & Konsultant marcin@wss.pl
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.