Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.

Podobne prezentacje


Prezentacja na temat: "Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr."— Zapis prezentacji:

1 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Transmitancja widmowa i charakterystyki częstotliwościowe Interesuje nas: Odpowiedź obiektu liniowego stacjonarnego na wymuszenie sinusoidalne Potrafimy już znajdować: Odpowiedź w dziedzinie czasu, na dowolne wymuszenie i przy dowolnych warunkach początkowych Odpowiedź w dziedzinie zmiennej zespolonej s, na dowolne wymuszenie i przy dowolnych warunkach początkowych Przypadek szczególny: zerowy warunek początkowy, prowadzi do pojęcia transmitancji operatorowej R.R. G(s) u(t) y(t) U(s) Y(s)

2 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 2 Przykładowy obiekt: Model matematyczny:

3 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3 Dla: gdzie: Odpowiedź operatorowa układu:

4 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4 Znajdźmy odpowiedź naszego przykładowego układu na wymuszenie sinusoidalne Interesują nas odpowiedzi na pytania: czy odpowiedź układu będzie sinusoidalna dla t 0 (ogólnie dla t t 0, gdzie t 0 - chwila początkowa obserwacji) co można będzie powiedzieć o stosunku amplitud sygnału wyjściowego i wejściowego - wzmocnieniu co można będzie powiedzieć o kątach fazowych sygnału wyjściowego i wejściowego – przesunięciu fazowym

5 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5 Przedstawmy równanie różniczkowe modelu układu w postaci: Rozwiązanie tego równania u wy (t) (odpowiedź układu) dla dowolnego wymuszenia u we (t) ma postać (patrz poprzednie wykłady): (*)(*) Składowa swobodna odpowiedzi Składowa wymuszona odpowiedzi

6 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6 Jaka będzie odpowiedź układu, jeżeli wymuszenie będzie miało postać: (**)

7 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7 Podstawiając (**) do (*) Można pokazać (dobre zadanie do samodzielnego wykonania), że odpowiedź układu na sinusoidalne wymuszenie ma postać: Wniosek: odpowiedź układu na wymuszenie sinusoidalne nie jest sinusoidalna dla dowolnego t 0

8 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8 Jeżeli interesujemy się odpowiedzią układu dla chwil t wystarczająco odległych od chwili t>>0 takich, że składowa swobodna będzie pomijalnie mała: sygnał odpowiedzi układu na wymuszenie wyniesie Odpowiedź częstotliwościowa układu

9 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9 Wejście Wyjście gdzie: Wnioski: Odpowiedź ustalona układu liniowego stacjonarnego pobudzanego sygnałem sinusoidalnym o częstotliwości kątowej jest również sygnałem sinusoidalnym o tej samej częstotliwości

10 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 10 Wejście Wyjście gdzie: Wnioski: Amplituda odpowiedzi ustalonej układu jest różna od amplitudy wymuszenia i zależy od częstotliwości kątowej ω sygnału wymuszającego (poza oczywistą zależnością od parametrów układu)

11 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 11 Wejście Wyjście gdzie: Wnioski: Kąt fazowy odpowiedzi ustalonej układu jest różny od kąta fazowego wymuszenia i zależy od częstotliwości kątowej ω sygnału wymuszającego (poza oczywistą zależnością od parametrów układu)

12 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 12 =

13 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 13 Policzmy: a. Stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego b. Różnicę kątów fazowych sygnału wyjściowego i sygnału wejściowego

14 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 14 Amplituda sygnału wejściowego: Amplituda sygnału wyjściowego: a. Stosunek amplitud:

15 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 15 Kąt fazowy sygnału wejściowego: Kąt fazowy sygnału wyjściowego: b. Różnica kątów fazowych:

16 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 16 Wróćmy do opisu dynamiki przykładowego układu za pomocą transmitancji operatorowej G(s) jest funkcją zespoloną zmiennej zespolonej s =σ+jω W szczególności jej wartości można obliczać dla s=jω

17 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 17 Policzmy zatem wartości G dla s=j Możemy poszukiwać dla przedstawienia w postaciach używanych dla liczb zespolonych

18 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 18 Przykład 1: ReG(jω)ImG(jω) |G(jω)| G(jω) Przypomnieć sobie zasady rachunku liczb zespolonych!!!

19 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 19 Przykład 2: ReG(jω) ImG(jω)

20 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 20 Wykonajmy eksperyment – policzmy dla pokazanego na początku układu RL transmitancję dla s=j Moduł: Faza:

21 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 21 Porównanie: Wniosek:!!! Transmitancja dla s=j zawiera pełną informację o odpowiedziach częstotliwościowych (ustalonej odpowiedzi wymuszonej na sygnał sinusoidalny) układu dynamicznego dla różnych pulsacji ω - z odpowiedzi częstotliwościowej- z transmitancji widmowej

22 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 22 Stąd: Transmitancja dla s=j stosowana jest jako narzędzie analizy układów dynamicznych i nosi nazwę transmitancji widmowej Definicja transmitancji widmowej

23 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 23 Matematycznie: G(jω) odwzorowuje dziedzinę (oś) pulsacji ω płaszczyznę zespoloną

24 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 24 - wzmocnienie amplitudowe, moduł - przesunięcie fazowe, faza Stosowane nazwy:

25 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 25 Przykład 3:

26 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 26 Przykład 3: c.d. Dyskusja: Jeżeli dla to Jeżeli dla to Element inercyjny zmniejsza amplitudę i wprowadza opóźnienie fazowe

27 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 27 Człon inercyjny jako filtr dolnoprzepustowy Dwustronnie odwrotne przekształcenie Laplacea

28 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 28 Odpowiedź na wymuszenie skokowe o amplitudzie A Wzmocnienie statyczne Stała czasowa styczna w t = t 0 Transmitancja widmowa Moduł: Faza: Część rzeczywista P( ) Część urojona Q( )

29 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 29 a) charakterystyka (częstotliwościowa) amplitudowa b) charakterystyka (częstotliwościowa) fazowa

30 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 30 Przykład 4: Mamy, Niech wymuszenie: wykorzystamy zasadę superpozycji

31 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 31 Skorzystamy z właściwości działań na liczbach zespolonych przedstawionych w postaci wykładniczej Dla sygnału wymuszającego: Odpowiedź ustalona: W dziedzinie częstotliwości dla obiektu o transmitancji G(j ): W przykładzie:

32 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 32 Po podstawieniu danych przykładu: Składowa wymuszenia (wejścia) o częstotliwości poza przepustowością filtru została odrzucona!

33 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 33 Dlaczego interesują nas odpowiedzi częstotliwościowe? sygnały sinusoidalne są często wymuszeniami układów Dowolne sygnały dobrze aproksymują się za pomocą szeregów Fouriera Możliwość eksperymentalnego wyznaczenia transmitancji widmowej

34 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 34

35 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 35 Formy graficznego przedstawiania transmitancji widmowej – charakterystyki częstotliwościowe Znane są następujące charakterystyki częstotliwościowe charakterystyka amplitudowo – fazowa zwana charakterystyką Nyquista

36 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 36 charakterystyka amplitudowa (a) charakterystyka fazowa (b)

37 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 37 charakterystyka składowej rzeczywistej transmitancji (a) charakterystyka składowej urojonej transmitancji (b)

38 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 38 charakterystyka logarytmiczna amplitudowa (a) charakterystyka logarytmiczna fazowa (b) zwane wykresami Bodea

39 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 39

40 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 40 Charakterystyki amplitudowo – fazowe; wykresy Nyquista

41 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 41 Przykład 5:

42 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 42

43 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 43 Charakterystyki logarytmiczne amplitudy i fazy; wykresy Bodea Transmitancję dowolnego elementu można przedstawić:

44 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 44

45 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 45

46 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 46 Przykładowo:

47 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 47 Szkicując charakterystyki asymptotyczne przyjmuje się zwykle zgrubnie:

48 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 48 Charakterystyki amplitudy

49 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 49 Charakterystyka błędu modułu

50 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 50 Charakterystyki fazy

51 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 51 Charakterystyki rzeczywiste i asymptotyczne

52 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 52 Przykład 6: ω 1 = 10

53 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 53 Przykład 7: ω 1 = 10

54 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 54 Przykład 8:

55 Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 55 Dokładność aproksymacji:


Pobierz ppt "Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr."

Podobne prezentacje


Reklamy Google