Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

ALGORYTMY POSZUKIWANIA I PORZĄDKOWANIA ELEMENTY JĘZYKA PROGRAMOWANIA

Podobne prezentacje


Prezentacja na temat: "ALGORYTMY POSZUKIWANIA I PORZĄDKOWANIA ELEMENTY JĘZYKA PROGRAMOWANIA"— Zapis prezentacji:

1

2 ALGORYTMY POSZUKIWANIA I PORZĄDKOWANIA ELEMENTY JĘZYKA PROGRAMOWANIA
Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu informatyka +

3 Algorytm, algorytmika algorytm od Muhammad informatyka +
Na str. 3-7 są zamieszczone uwagi wstępne na temat algorytmiki. Można je pominąć i wrócić później. Algorytm – opis rozwiązania krok po kroku postawionego problemu lub sposobu osiągnięcia jakiegoś celu Pierwszy algorytm – algorytm Euklidesa 300 p.n.e algorytm od Muhammad ibn Musa al-Chorezmi IX w. Algorytmika – dziedzina zajmująca się algorytmami i ich własnościami informatyka +

4 Algorytmy a informatyka
Informatyka – jedna z definicji: dziedzina wiedzy i działalności zajmująca się algorytmami Czy zajmuje się też algorytmami kulinarnymi? Donald E. Knuth: Mówi się często, że człowiek dotąd nie zrozumie czegoś, zanim nie nauczy tego – kogoś innego. W rzeczywistości, człowiek nie zrozumie czegoś (algorytmu) naprawdę, zanim nie zdoła nauczyć tego – komputera. Ralf Gomory (IBM): Najlepszym sposobem przyspieszania komputerów jest obarczanie ich mniejszą liczbą działań (szybszymi algorytmami) informatyka +

5 Algorytmiczne rozwiązywanie problemu
Dla problemu – chcemy otrzymać rozwiązanie komputerowe, które jest: zrozumiałe dla każdego, kto zna problemu poprawne, czyli spełnia specyfikację (opis) problemu efektywne, czyli nie marnuje czasu i pamięci Metoda rozwiązywania: analiza sytuacji problemowej sporządzenie specyfikacji: wykaz danych, wyników i relacji projekt rozwiązania komputerowa realizacja rozwiązania – implementacja testowanie poprawności rozwiązania dokumentacja i prezentacja rozwiązania informatyka +

6 Rozwiązywanie problemów z pomocą komputerów
Objaśnienie dwóch terminów: Problem: problem, gdy nie podano nam, jak należy go rozwiązać, ale wiemy wystarczająco, by poradzić sobie z nim a więc, problem jest dla każdego nie tylko dla orłów Programowanie: komputery wykonują tylko programy cokolwiek uruchamiamy na komputerze: Google, dokument w Word, arkusz w Excel, naciśnięcie klawisza – jest programem każdy widoczny i niewidoczny efekt działania komputera to wynik działania jakiegoś programu Konkluzja: powinniśmy lepiej poznać programowanie komputerów informatyka +

7 Myślenie algorytmiczne Myślenie komputacyjne (ang
Myślenie algorytmiczne Myślenie komputacyjne (ang. computational thinking) Reklama firmy IBM z 1924 roku Komputer to maszyna do myślenia !!! informatyka +

8 Poszukiwanie, porządkowanie, elementy programowania PLAN
Rozgrzewka (warm-up) – kilka krótkich programów Przeszukiwanie zbioru – Min i Max: schematy blokowe, pierwsze programy, złożoność algorytmu, Kompletowanie podium zwycięzców turnieju Jednoczesne znajdowanie najmniejszego i największego elementu Porządkowanie przez wybór – iteracja algorytmu Porządkowanie przez zliczanie Poszukiwanie informacji w zbiorach nieuporządkowanych i uporządkowanych Dziel i zwyciężaj, rekurencja: sortowanie przez scalanie i sortowanie szybkie informatyka +

9 Rozgrzewka przy komputerach
Rozgrzewka (warm-up) – kilka krótkich programów: obliczanie pole trójkąta dodatkowo sprawdzanie, czy dane są dobre – warunek obliczanie pola trójkąta dla ciągu danych – iteracja i tablice Ciekawe zadanie dotyczące trójkątów: Dane: ciąg (bardzo długi) liczb Odpowiedź: czy z każdej trójki liczb z tego ciągu można zbudować trójkąt? Wskazówka: istnieje rozwiązanie, w którym nie trzeba sprawdzać warunku trójkąta dla każdej trójki liczb informatyka +

10 Warsztaty Algorytm, język programowania, komputer
Proces komputerowej realizacji algorytmu: Opis algorytmu – słowny Zapis w języku programowania (Pascal, C++) Kompilacja – przetłumaczenie na język zrozumiały przez komputer Wykonanie Testowanie Dokumentacja informatyka +

11 Znajdowanie elementu w zbiorze
Znajdź element w zbiorze: najwyższego ucznia w swojej klasie – metoda spaghetti jak zmieni się Twój algorytm, jeśli chciałbyś znaleźć w klasie najniższego ucznia znajdź w swojej klasie ucznia, któremu droga do szkoły zabiera najwięcej czasu znajdź najstarszego (lub najmłodszego) ucznia w swojej szkole znajdź największą kartę w potasowanej talii kart znajdź najlepszego tenisistę w swojej klasie – nie ma remisów znajdź najlepszego gracza w warcaby w swojej klasie – możliwe są remisy Podstawowa operacja – porównanie: dwóch liczb lub kombinacji liczb (data, karty): czy x < y ? dwóch zawodników: rozegranie meczu informatyka +

12 Specyfikacja problemu
Specyfikacja problemu – dokładne opisanie problemu Problem Min – Znajdowanie najmniejszego elementu w zbiorze Dane: Liczba naturalna n i zbiór n liczb dany w ciągu x1, x2, ..., xn Wynik: Najmniejsza wśród liczb x1, x2, ..., xn – oznaczmy ją min Metoda rozwiązania: przeszukiwanie liniowe – od lewej do prawej Algorytm Min – Znajdowanie najmniejszego elementu w zbiorze Krok 1. Przyjmij za min pierwszy element w zbiorze (w ciągu), czyli przypisz min := x1. Krok 2. Dla kolejnych elementów xi, gdzie i = 2, 3, ..., n, jeśli min > xi, to przypisz min := xi. Algorytm Max – prosta modyfikacja: zamiana > na < Wyznaczanie imin – indeksu elementu o wartości min imin := 1 imin := i informatyka +

13 Algorytm Min – demo informatyka +
Demonstracja przeszukiwania od lewej do prawej: informatyka +

14 (Zgrubny) schemat blokowy algorytmu Min
Instrukcje warunkowe: rozgałęzienia algorytmu Krok 1: min ← pierwszy element ze zbioru A Krok 2: Czy porównano wszystkie elementy ze zbioru A ? Instrukcja iteracyjna Tak Nie Ada Augusta, córka Byrona, uznawana powszechnie za pierwszą programistkę komputerów, przełomowe znaczenie maszyny analitycznej Ch. Babbage’a, pierwowzoru dzisiejszych komputerów, upatrywała właśnie „w możliwości wielokrotnego wykonywania przez nią danego ciągu instrukcji, z liczbą powtórzeń z góry zadaną lub zależną od wyników obliczeń”, a więc w iteracji. Koniec algorytmu x ← kolejny element ze zbioru A Nie min > x ? Tak min ← x informatyka +

15 Pełny schemat blokowy algorytmu Min
informatyka +

16 Skomputeryzowany schemat blokowy
Schemat blokowy wykonany w programie ELI Iteracja Wprowadzanie danych Ciąg (tablica) z danymi Bloki warunkowe informatyka +

17 Algorytm Min w postaci programu
Program w języku Pascal program Min; var i,imin,min,n,x:integer; begin read(n); read(x); min:=x; imin:=1; for i:=2 to n do begin read(x); if min > x then begin min:=x; imin:=i end end; write(imin,min) end. nazwa programu deklaracje, typy zmiennych blok programu – początek czytaj n czytaj pierwszy element iteracja od 2 do n czytaj kolejny element instrukcja warunkowa popraw min instrukcja war. – koniec iteracja – koniec pisz wynik blok programu – koniec informatyka +

18 Pracochłonność algorytmu Min
Porównanie – podstawowa operacja w algorytmie Min. Pracochłonność (złożoność obliczeniowa) algorytmu – liczba podstawowych operacji wykonywanych przez algorytm. Pytanie: Ile porównań wykonuje algorytm Min? Odpowiedź: o jedno mniej niż jest elementów, czyli n – 1 Pytania: Czy można szybciej? Czy istnieje szybszy algorytm znajdowania min? A może metoda pucharowa wyłaniania zwycięzcy w turnieju jest szybsza? informatyka +

19 Ośmiu zawodników: 7 meczy
Wyłanianie najlepszego zawodnika w turnieju czyli inny sposób znajdowania max (lub min) Porównania – mecze Tomek Ośmiu zawodników: 7 meczy n zawodników: n – 1 meczy a więc nie jest szybsza Bartek Tomek Bartek Witek Tomek Tolek Bartek Romek Bolek Witek Tomek Zenek Tolek Felek informatyka +

20 A może mamy algorytm najlepszy?
Podsumowanie: Mamy dwa algorytmy znajdowania min lub max: przeszukiwanie liniowe rozegranie turnieju które na zbiorze n elementów wykonują n – 1 porównań Może nie ma szybszego algorytmu? TAK! Hugo Steinhaus tak to uzasadnił: Jeśli Tomek jest zwycięzcą turnieju, w którym startuje n zawodników, to każdy inny spośród n – 1 zawodników musiał przegrać przynajmniej raz, a zatem rozegrano przynajmniej n – 1 meczy. Zatem każdy algorytm musi wykonać przynajmniej n – 1 porównań, czyli nasze algorytmy są najszybsze – są optymalne. informatyka +

21 A jak znaleźć drugiego najlepszego zawodnika w turnieju?
Tomek Czy jest nim Bartek? Bo przegrał z Tomkiem? Ale Bartek nie grał z drugą połową! Bartek Tomek ??? Tylko dwa dodatkowe mecze! Bartek Witek ??? Tomek Tolek Bartek Romek Bolek Witek Tomek Zenek Tolek Felek informatyka +

22 Jednoczesne znajdowanie min i max
Obserwacja: jeśli x  y, to x kandydatem na min, a y kandydatem na max Algorytm „dziel i zwyciężaj”: Krok 1. Podział na kandydatów na min i kandydatów na max Kandydaci na max 3 3 ? 1 1 2 2 ? 2 5 5 ? 3 3 8 4 ? 8 4 5 2 ? 5 2 max = 8 Porównania parami min = 1 Kandydaci na min Krok 2. Znajdź min i max Liczba porównań: algorytm naiwny: n – 1 (min) + n – 2 (max) = 2n – 3 algorytm dziel i zwyciężaj: n/2(podział)+ (n/2–1)(min) + (n/2–1)(max) ok. 3n/2 – 2 – jest to algorytm optymalny informatyka +

23 Problem porządkowania (sortowania)
Dane: Liczba naturalna n i ciąg n liczb x1, x2, ..., xn Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej Algorytm: porządkowanie przez wybór – Selection Sort Idea: najmniejszy wśród nieuporządkowanych daj na początek Krok 1. Dla i = 1, 2, ..., n – 1 wykonaj kroki 2 i 3, a następnie zakończ algorytm Krok 2. Znajdź k takie, że xk jest najmniejszym elementem w ciągu xi, ..., xn Krok 3. Zamień miejscami elementy xi oraz xk informatyka +

24 Porządkowanie przez wybór – demo (1)
Żółte – podciąg już uporządkowany Zielone i czerwone – podciąg porządkowany informatyka +

25 Porządkowanie przez wybór – demo (2)
Podciąg już uporządkowany Podciąg porządkowany informatyka +

26 Złożoność porządkowania przez wybór
Liczba zamian elementów w kolejnych krokach: … + 1 = n – 1 Liczba porównań w kolejnych krokach: (n – 1) + (n – 2) + (n – 3) + … = ? Przykład n = 6 Pole prostokąta: 5 x 6 Suma = pole czarnych diamentów: 5 x 6 2 Ogólnie suma: (n – 1) x n Liczby trójkątne 5 4 3 2 1 5 = n – 1 6 = n informatyka +

27 Porządkowanie przez zliczanie
Problem porządkowania niewielkich liczb Dane: Liczba naturalna n i ciąg n liczb całkowitych x1, x2, ..., xn, należących do przedziału [1..M] – na ogół n < M. Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej Algorytm. Porządkowanie przez zliczanie – CountingSort Idea: Liczymy, ile jest konkretnych liczb w ciągu Krok 1. Dla i = 1, 2, ..., M: ci = 0 zerowanie liczników. Krok 2. Dla i = 1, 2, ..., n: zwiększ ck o 1, gdzie k = xi. Krok 3. Dla i = 1, 2, ..., M: na kolejnych ci pozycjach w ciągu x umieść element i. Liczba operacji – proporcjonalna do n + M. informatyka +

28 Poszukiwanie elementu w zbiorze
Problem poszukiwania elementu w zbiorze Dane: Zbiór elementów w postaci ciągu n liczb x1, x2, ..., xn. Wyróżniony element y Wynik: Jeśli y należy do tego zbioru, to podaj jego miejsce (indeks) w ciągu, a w przeciwnym razie – sygnalizuj brak takiego elementu w zbiorze Dwa przypadki: Nieuporządkowany ciąg liczb x1, x2, ..., xn Uporządkowany ciąg liczb x1, x2, ..., xn Nasz cel: Jakie są korzyści z uporządkowania? Jak utrzymywać porządek wśród informacji? – wstaw y do ciągu informatyka +

29 Poszukiwania w zbiorze nieuporządkowanym
Algorytm – Poszukiwanie liniowe Krok 1. Dla i = 1, 2, ..., n, jeśli xi = y, to przejdź do kroku 3. Krok 2. Komunikat: W ciągu danych nie ma elementu równego y. Zakończ algorytm: – wynik: –1 Krok 3. Element równy y znajduje się na miejscu i w ciągu danych. Zakończ algorytm: wynik: i begin i:=1; while (x[i]<>y) and (i<n) do i:=i+1; if x[i]=y then PrzeszukiwanieLiniowe:=i else PrzeszukiwanieLiniowe:=-1 end Pewna niedogodność – sprawdzanie, czy koniec ciągu. informatyka +

30 Poszukiwania w zbiorze nieuporządkowanym z wartownikiem
Algorytm – Poszukiwanie liniowe z wartownikiem Takie same kroki algorytmu inna implementacja, czyli komputerowa realizacja: na końcu ciągu: x1 x2 x3 x4 … xn begin i:=1; x[n+1]:=y; while x[i]<>y do i:=i+1; if i<=n then PrzeszukiwanieLinioweWartownik:=i else PrzeszukiwanieLinioweWartownik:=-1 end wstawiamy wartownika – pilnuje końca ciągu xn+1 Nie ma sprawdzania, czy koniec ciągu, bo przeszukiwanie zawsze zatrzyma się na elemencie y. informatyka +

31 Poszukiwanie w zbiorze uporządkowanym Zabawa w zgadywanie liczby
Zgadywana liczba: 17 w przedziale [1 : 20] Metoda: połowienia przedziału Kolejne kroki: strzałka wskazuje wybór; kolor czerwony – ciąg do przeszukania: 5 porównań zamiast 20 !!! informatyka +

32 Poszukiwanie przez połowienie w ciągu uporządkowanym
function PrzeszukiwanieBinarne(x:tablicax; k,l:integer; y:integer):integer; {Przeszukiwanie binarne ciagu x[k..l] w poszukiwaniu elementu y.} var Lewy,Prawy,Srodek:integer; begin Lewy:=k; Prawy:=l; while Lewy<=Prawy do begin Srodek:=(Lewy+Prawy) div 2; if x[Srodek]=y then begin PrzeszukiwanieBinarne:=Srodek; exit end; {element y nalezy do przeszukiwanego ciagu} if x[Srodek]<y then Lewy:=Srodek+1 else Prawy:=Srodek-1 end; PrzeszukiwanieBinarne:=-1 end Początkowe końce przedziału Połowienie przedziału y należy do przedziału Zmiana końców przedziału y nie należy do przeszukiwanego przedziału informatyka +

33 Umieszczanie przez połowienie w ciągu uporządkowanym
Dane: Uporządkowany ciąg liczb w tablicy x[k..l] oraz element y Wynik: Miejsce dla y w ciągu x[k..l] takie, aby po wstawieniu y ciąg nadal był uporządkowany Algorytm: y wstawiamy do przeszukiwanego ciągu w to miejsce, gdzie algorytm poszukiwania kończy działanie, a więc tam, gdzie jest y (jeśli y jest już w ciągu), albo gdzie powinien być. informatyka +

34 Porównaj, jaka jest potęga uporządkowania !!!
Poszukiwanie przez połowienie – złożoność Liczba kroków w algorytmie połowienia: Ile razy należy przepołowić ciąg o danej długości, aby znaleźć element lub miejsce dla niego? Przykład dla n = 1200 Kolejne długości ciągu: 1200, 600, 300, 150, 75, 38, 19, 10, 5, 3, 2, 1 11 razy dzielono ciąg o długości 1200, by pozostał 1 element Liczba porównań w algorytmach poszukiwania dla n = 1200: przez połowienie liniowy Porównaj, jaka jest potęga uporządkowania !!! informatyka +

35 Poszukiwanie przez połowienie złożoność – dla orłów
Dla n = 1200 liczba porównań w algorytmie połowienia wyniosła 11 Pytania: Jak liczba porównań zależy od n? Jak dobry jest to algorytm? Liczba porównań dla różnych n: Algorytm poszukiwania przez połowienie jest optymalny, czyli najszybciej przeszukuje zbiory uporządkowane. n liczba porównań logarytm to anagram od algorytm Funkcja logarytm, bardzo ważna w algorytmice ok.log2 n informatyka +

36 Jednoczesne znajdowanie min i max pełny algorytm dziel i zwyciężaj
Algorytm Min-i-Max-Rek(Z,min,max) Dane: Zbiór liczb Z Wyniki: min – najmniejszy element w zbiorze Z max – największy element w zbiorze Z Krok 1. Jeśli Z = {a}, to min := a; max := a Jeśli Z = {a, b}, to min := min {a, b}; max := max {a, b} Krok 2. Gdy Z ma więcej niż dwa elementy, to: 2a. Podziel zbiór Z na dwa podzbiory Z1 i Z2 2b. Min-i-Max-Rek(Z1,min1,max1) 2c. Min-i-Max-Rek(Z2,min2,max2) 2d. min := min {min1, min2}; max := max {max1, max2} Rekurencyjne wywołania na podzbiorach informatyka +

37 Jednoczesne znajdowanie min i max pełny algorytm dziel i zwyciężaj
Jednoczesne znajdowanie min i max pełny algorytm dziel i zwyciężaj DEMO dziel dziel dziel 1 4 5 2 4 9 7 3 (1 ,4) (2, 5) (4, 9) (3, 7) (min, max) (3, 9) (1, 5) (1, 9) informatyka +

38 Sortowanie przez scalanie – scalanie
Scalanie – z dwóch uporządkowanych ciągów utwórz jeden uporządkowany Algorytm scalania. Scal. Dane: dwa ciągi uporządkowane Wynik: scalony ciąg uporządkowany Krok: do tworzonego ciągu pobieraj najmniejszy element z czoła scalanych ciągów Scalane ciągi Scalanie Scalony ciąg informatyka +

39 Sortowanie przez scalanie – scalanie
Scalane ciągi Scalone ciągi, w innym miejscu informatyka +

40 Sortowanie przez scalanie – opis
Rekurencyjne wywołania na podciągach Algorytm porządkowania przez scalanie MergeSort(l,p,x) Dane: Ciąg liczb xl, xl+1, …, xp Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej. Krok 1. Jeśli l < p, to przyjmij s:=(l+p) div 2 i wykonaj trzy następne kroki. Krok 2. MergeSort(l,s,x) – sortowanie pierwszej połowy ciągu Krok 3. MergeSort(s+1,p,x) – sortowanie drugiej połowy ciągu Krok 4. Zastosuj algorytm Scal do ciągów (xl, …, xs) i (xs+1, …, xp) i wynik umieść w ciągu (xl, …, xp). informatyka +

41 Sortowanie przez scalanie DEMO
dziel 9 5 0 dziel dziel 2 1 9 5 2 dziel dziel 2 1 9 5 scal scal 5 9 1 2 scal scal scal informatyka +

42 Sortowanie przez scalanie DEMO
Posortowana jest już pierwsza połowa ciągu i w trakcie sortowania drugiej połowy, scalane są dwa podciągi z pierwszej części drugiej połowy, uporządkowane wcześniej rekurencyjnie tą samą metodą Posortowana pierwsza połowa ciągu Scalane ciągi Wynik scalania dodatkowym miejscu informatyka +

43 Sortowanie szybkie – opis
Rekurencyjne wywołania na podciągach Algorytm szybkiego sortowania QuickSort(l,p,x) Dane: Ciąg liczb xl, xl+1, …, xp Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej. Krok 1. Jeśli l < p, to przyjmij za element podziału v = xl i podziel tym elementem dany ciąg. Oznacza to, że v znajdzie się na pozycji elementu xk, dla pewnego k spełniającego l ≤ k ≤ p, i elementy na lewo będą od niego nie większe, a na prawo – nie mniejsze. Wykonaj dwa następne kroki. Krok 2. QuickSort(l,k–1,x) – sortowanie elementów na lewo od v Krok 3. QuickSort(k+1,p,x) – sortowanie elementów na prawo od v informatyka +

44 Sortowanie szybkie DEMO
7 5 8 10 1 15 12 4 11 19 Zamiana miejscami 7 5 1 10 15 12 4 11 19 8 Zamiana miejscami 7 5 1 4 15 12 10 11 19 8 Rekurencyjne wywołania na podciągach 7 5 1 4 15 12 10 11 19 8 1 5 4 7 15 12 10 11 19 8 Na lewo od 7 elementy nie większe od 7 – porządkujemy tak samo 7 na swoim miejscu w ciągu uporządkowanym Na prawo od 7 elementy nie mniejsze od 7 – porządkujemy tak samo informatyka +

45 Pokrewne zajęcia w Projekcie Informatyka +
Wykład+Warsztaty (Wszechnica Poranna): Wprowadzenie do algorytmiki i programowania – wyszukiwanie i porządkowanie informacji Proste rachunki wykonywane za pomocą komputera. Techniki algorytmiczne – przybliżone (heurystyczne) i dokładne. Wykłady (Wszechnica Popołudniowa): Czy wszystko można policzyć na komputerze? Porządek wśród informacji kluczem do szybkiego wyszukiwania. Dlaczego możemy się czuć bezpieczni w sieci, czyli o szyfrowaniu informacji. Znajdowanie najkrótszych dróg, najniższych drzew, najlepszych małżeństw informatyka +

46 Pokrewne zajęcia w Projekcie Informatyka +
Kursy (24 godz.) – Wszechnica na Kołach: Algorytmy poszukiwania i porządkowania. Elementy języka programowania Różnorodne algorytmy obliczeń i ich komputerowe realizacje Grafy, algorytmy grafowe i ich komputerowe realizacje  Kursy (24 godz.) – Kuźnia Informatycznych Talentów – KIT dla Orłów: Przegląd podstawowych algorytmów Struktury danych i ich wykorzystanie Zaawansowane algorytmy Tendencje – Wykłady  Algorytmy w Internecie, K. Diks Czy P = NP, czyli jak wygrać milion dolarów w Sudoku, J. Grytczuk Między przeszłością a przyszłość informatyki, M.M Sysło informatyka +

47


Pobierz ppt "ALGORYTMY POSZUKIWANIA I PORZĄDKOWANIA ELEMENTY JĘZYKA PROGRAMOWANIA"

Podobne prezentacje


Reklamy Google