Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Rachunek prawdopodobieństwa 2
Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: styczeń 2010
2
Zmienna losowa
3
Definicja Niech W będzie przestrzenią zdarzeń
elementarnych. Każdą funkcję określoną na zbiorze W i o wartościach w zbiorze liczb rzeczywistych nazywać będziemy zmienną losową. Jeśli zmienna przyjmuje co najwyżej przeliczalną liczbę wartości, to będziemy ją nazywali zmienną losową dyskretną.
4
Przykład (a) Rozpatrzymy doświadczenie polegające na rzucie monetą. Wówczas możemy przyjąć następującą zmienną losową: X(orzeł)=0, X(reszka)=1 (b) Rozpatrzmy doświadczenie polegające na rzucie kostką do gry. Wówczas mamy następującą zmienna losową: X(1)=1, X(2)=2, X(3)=3,...,X(6)=6
5
Definicja Powiemy, że dwie zmienne losowe X i Y są
niezależne wttw dla dowolnych przedziałów I, J zbioru liczb rzeczywistych P(XÎI i YÎJ) = P(XÎI)P(YÎJ) Jeśli zmienne X i Y są zmiennymi dyskretnymi, to niezależność zmiennych wyraża się warunkiem: P(X=x i Y=y)=P(X=x)P(Y=y) dla dowolnych x,y Î R.
6
Rozkład prawdopodobieństwa
7
rozkładem prawdopodobieństwa
Definicja Funkcję fX określoną na zbiorze liczb rzeczywistych R i o wartościach w zbiorze [0,1] taką, że fX(x)=P(X=x) dla xÎR nazywamy rozkładem prawdopodobieństwa zmiennej losowej X.
8
Przykład UWAGA! p0+p1 + p2 +... + p5=1
Rzucamy dwiema symetrycznymi kostkami do gry. Każdemu z rzutów przypisujemy wartość bezwzględną różnicy liczby oczek wyrzuconej na jednej i drugiej kostce. Podaj rozkład zmiennej losowej. UWAGA! p0+p1 + p p5=1 xi 1 2 3 4 5 pi 6/36 10/36 8/36 4/36 2/36
9
Przykład
10
Przykład {(0,6/36), (1,10/36), (2,8/36), (3,6/36), (4,4/36), (5,2/36)} 10/36 8/36 6/36 4/36 2/36
11
Rozkładem dwumianowym (Bernoulliego)
Definicja Rozkładem dwumianowym (Bernoulliego) Nazywamy rozkład prawdopodobieństwa określony wzorem gdzie n - liczba prób, k – liczba sukcesów, p – p-d sukcesu dla k=0,1,...,n dla pozostałych wartości k
12
Przykład Wiadomo, że szansa poprawnego oznaczenia próbki
w jednokrotnym badaniu mikroskopijnym wynosi 3:4. Poddano badaniu 3 próbki. Niech X oznacza liczbę próbek, które zostały poprawnie oznaczone. Wyznaczyć te prawdopodobieństwa.
13
Przykład p0+p1 + p2 +p3= 1/64+9/64+27/64+27/64=1 xi 1 2 3 pi 1/64 9/64
1 2 3 pi 1/64 9/64 27/64 p0+p1 + p2 +p3= 1/64+9/64+27/64+27/64=1
14
Definicja Rozkład prawdopodobieństwa określony
wzorem f(k) = p(1-p)k-1 nazywamy rozkładem geometrycznym.
15
Przykład Rozważmy doświadczenie polegające na serii niezależnych rzutów symetryczną monetą powtarzanych dopóty dopóki nie wypadnie orzeł. Niech X będzie zmienną losową, której wartością jest liczba wykonanych prób do chwili uzyskania orła. Wyznacz rozkład prawdopodobieństwa. p=1/2, (1-p)=1/2, p(1-p)i-1=(1/2)(1/2)i-1=(1/2)i xi 1 2 3 .... i pi 1/2 (1/2)2 (1/2)3 (1/2)i
16
jednostajnym (jednorodnym),
Definicja Rozkład prawdopodobieństwa dyskretnej zmiennej losowej nazywamy jednostajnym (jednorodnym), jeśli przybiera ona wszystkie swoje wartości z takim samym prawdopodobieństwem.
17
Przykład Dwaj gracze grają w orła i reszkę. Jeśli wypadnie orzeł gracz G1 płaci graczowi G2 złotówkę. Jeśli wypadnie reszka, to gracz G2 płaci graczowi G1 złotówkę. Niech X będzie zmienną losową opisującą wygraną gracza G1. Wyznacz rozkład prawdopodobieństwa. xi -1 1 pi 1/2
18
Dystrybuanta zmiennej losowej
19
Definicja Niech X będzie zmienną losową określoną na
dowolnej przestrzeni zdarzeń losowych W. Dystrybuantą zmiennej X nazywamy funkcję F:R ® [0,1] taką, że FX(x) = P(X £ x) dla xÎR.
20
Definicja W przypadku zmiennej losowej dyskretnej powyższy wzór przyjmuje postać FX(x) = Sy£x fX(y) gdzie fX jest rozkładem prawdopodobieństwa zmiennej X.
21
Przykład Do tarczy oddaje się w sposób niezależny 3 strzały. P-d trafienia do tarczy wynosi ½ dla każdego strzału. Niech zmienna losowa X oznacza liczbę trafień w tarczę. Wyznaczyć dystrybuantę zmiennej losowej. xi 1 2 3 pi 1/8 3/8 X (-,0) [0,1) (1,2] (2,3] (3,+) F(x) 1/8 4/8 7/8 1
22
Przykład 1 7/8 1/2 1/8 F(2)=P(X2)=P(X=2)+P(X=1)+P(X=0)=3/8+3/8+1/8=7/8
23
Lemat Dystrybuanta zmiennej losowej dyskretnej
jest funkcją niemalejącą. Co więcej, dystrybuanta zmiennej losowej rośnie skokowo w punktach należących do zbioru wartości tej zmiennej.
24
PARAMETRY ROZKŁADU
25
Wartość oczekiwana zmiennej losowej
26
E(X) = SwÎW X(w)× P({w})
Definicja Niech W będzie przestrzenią zdarzeń elementarnych, a X zmienną losową określoną w W. Wartością oczekiwaną zmiennej X nazywamy liczbę E(X) = SwÎW X(w)× P({w})
27
Stwierdzenie Jeśli wszystkie zdarzenia elementarne są
jednakowo prawdopodobne, a przestrzeń W jest skończona, to P({w}) = 1/|W|, a wtedy
28
Lemat Niech X będzie zmienną losową dyskretną
określoną w pewnej przestrzeni zdarzeń elementarnych W oraz niech (xi)iÎI będzie ciągiem wszystkich różnych wartości jakie przyjmuje ta zmienna. Jeżeli suma SiÎI (xi × P(X=xi)) jest określona, to
29
Przykład Zakładając, że liczba wezwań górskiego pogotowia
ratunkowego w ciągu doby ma następujący rozkład (a) obliczyć p-d, że w ciągu doby liczba wezwań będzie wynosić od 2 do 4 P(2X4)=P(X=2)+P(X=3)+P(X=4)=0,18+0,15+0,12=0,45 (b) obliczyć oczekiwaną liczbę wezwań w ciągu doby E(X)=00,12+10,32+20,18+30,15+40,12+50,08+60,003=2,19 X=xi 1 2 3 4 5 6 P(X=xi) 0,12 0,32 0,18 0,15 0,08 0,003
30
Suma zmiennych losowych
Niech W będzie ustaloną przestrzenią zdarzeń, w której mamy określone dwie zmienne losowe dyskretne X i Y. Suma zmiennych losowych X i Y jest zmienną losową Z, określoną dla dowolnego zdarzenia elementarnego w tej przestrzeni jako Z(w) = X(w)+Y(w). Jeśli zmienna X przyjmuje wartości xi dla iÎI, a zmienna Y przyjmuje wartości yj dla jÎJ, to zmienna Z przyjmuje jako swoje wartości liczby (xi+yj) dla dowolnych iÎI i jÎJ.
31
Twierdzenie Niech W będzie przestrzenią zdarzeń,
w której określone są zmienne losowe X i Y. Jeśli wartości oczekiwane zmiennych X i Y istnieją, to dla dowolnego c zachodzą równości (1) E(cX) = cE(X), (2) E(X+Y) = E(X)+E(Y), (3) E(X - E(X)) = 0.
32
Iloczyn zmiennych losowych
Analogicznie jak sumę zmiennych, można zdefiniować iloczyn zmiennych losowych X i Y określonych w tej samej przestrzeni W. Przyjmujemy Z(w) = X(w) × Y(w) dla wÎW. Zmienna Z przyjmuje jako swoje wartości iloczyny xi×yj dla iÎ I i jÎ J, jeśli xi i yj są wartościami zmiennych X i Y odpowiednio.
33
Twierdzenie Jeśli X i Y są niezależnymi zmiennymi losowymi, to
E(X×Y) = E(X)×E(Y).
34
Wariancja zmiennej losowej
35
V(X) = (x1- m)2 × p1 +...+ (xn- m)2 × pn
Definicja Wariancją zmiennej losowej X, oznaczaną przez V(X), nazywamy wartość oczekiwaną zmiennej losowej (X-EX)2, tzn. V(X) = E((X-EX)2) Jeśli X jest zmienną dyskretną o rozkładzie prawdopodobieństwa {(xi,pi)}i=1,...n, oraz E(X) = m, to V(X) = (x1- m)2 × p (xn- m)2 × pn
36
Twierdzenie Dla dowolnej zmiennej losowej dyskretnej
(1) V(X) = E(X2) - (E(X))2 (2) dla dowolnego c¹E(X), V(X)<E((X-c)2)
37
Twierdzenie Jeżeli V(X) jest wariancją zmiennej losowej
dyskretnej X, a V(Y) jest wariancją zmiennej losowej dyskretnej Y, to dla dowolnej stałej rzeczywistej c, (1) V(cX) = c2V(X), (2) Jeśli zmienne losowe X i Y są niezależne, to V(X+Y)= V(X) + V(Y).
38
odchyleniem standardowym
Definicja Liczbę nazywamy odchyleniem standardowym zmiennej X.
39
Przykład Zakładając, że liczba wezwań górskiego pogotowia
ratunkowego w ciągu doby ma następujący rozkład Obliczyć wariancje i odchylenie standardowe. Wiemy, że E(X)=2,19, E(X2)=00,12+10,32+40,18+90,15+160,12+250,08+360,003= 6,418. Stąd V(X)=6,418-(2,19)2=1,6219 oraz X=xi 1 2 3 4 5 6 P(X=xi) 0,12 0,32 0,18 0,15 0,08 0,003
40
Parametry znanych rozkładów prawdopodobieństwa
41
Lemat Niech X będzie zmienną losową o rozkładzie zerojedynkowym
P(X=1) = p i P(X=0) = 1-p. Wtedy E(X)=p oraz V(X)=p(1-p).
42
Przykład Rozważmy następującą grę. Gracz rzuca monetą, jeśli
wypadnie reszka otrzymuje 1 zł jeśli wypadnie orzeł o trzymuje 0 zł. Niech X będzie zmienną losową, której wartością jest otrzymana kwota pieniędzy. Wyznacz wartość oczekiwaną, wariancję i odchylenie standardowe.
43
Przykład p=1/2 E(X)=p=1/2 V(X)=p(1-p)=1/21/2=1/4 (V(X))=1/2
Rozważmy następującą grę. Gracz rzuca monetą, jeśli wypadnie reszka otrzymuje 1 zł jeśli wypadnie orzeł otrzymuje 0 zł. Niech X będzie zmienną losową, której wartością jest otrzymana kwota pieniędzy. Wyznacz wartość oczekiwaną, wariancję i odchylenie standardowe. xi 1 pi 1/2 p=1/2 E(X)=p=1/2 V(X)=p(1-p)=1/21/2=1/4 (V(X))=1/2
44
Lemat Niech zmienna losowa X opisuje liczbę
sukcesów w schemacie Bernoulliego z parametrami n i p (n – ilość prób, p- prawdopodobieństwo sukcesu). Wtedy E(X)=np oraz V(X)=np(1-p).
45
Przykład Wiadomo, że szansa poprawnego oznaczenia próbki
w jednokrotnym badaniu mikroskopijnym wynosi 3:4. Poddano badaniu 3 próbki. Niech X oznacza liczbę próbek, które zostały poprawnie oznaczone. Wyznaczyć wartość oczekiwaną, wariancję i odchylenie standardowe.
46
Przykład n=3, p=3/4 E(X)=np=33/4=9/4=2,25
Wiadomo, że szansa poprawnego oznaczenia próbki w jednokrotnym badaniu mikroskopijnym wynosi 3:4. Poddano badaniu 3 próbki. Niech X oznacza liczbę próbek, które zostały poprawnie oznaczone. Wyznaczyć wartość oczekiwaną, wariancję i odchylenie standardowe. xi 1 2 3 pi 1/64 9/64 27/64 n=3, p=3/4 E(X)=np=33/4=9/4=2,25 V(X)=np(1-p)= 33/41/4=9/16 (V(X))=3/4=0,75
47
fX(k)=P(X=k)=p(1-p)k-1 dla k=1,2,3,...
Lemat Niech zmienna X ma rozkład geometryczny, tzn. rozkład określony następująco: fX(k)=P(X=k)=p(1-p)k-1 dla k=1,2,3,... Wtedy wartość oczekiwana zmiennej X, EX=1/p.
48
Przykład Rozważmy doświadczenie polegające na serii niezależnych rzutów symetryczną monetą powtarzanych dopóty dopóki nie wypadnie orzeł. Niech X będzie zmienną losową, której wartością jest liczba wykonanych prób do chwili uzyskania orła. Wyznacz wartość oczekiwaną.
49
Przykład Rozważmy doświadczenie polegające na serii niezależnych rzutów symetryczną monetą powtarzanych dopóty dopóki nie wypadnie orzeł. Niech X będzie zmienną losową, której wartością jest liczba wykonanych prób do chwili uzyskania orła. Wyznacz wartość oczekiwaną. p=1/2, (1-p)=1/2, xi 1 2 3 .... i pi 1/2 (1/2)2 (1/2)3 (1/2)i EX=1/p=1/(1/2)=2
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.