Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałLesława Graś Został zmieniony 11 lat temu
1
Wykład 2 4.1 Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących siły F działającej pomiędzy dwoma ładunkami Q1 i Q2; F Q1 • Q2 F 1/r2 F jest przyciągająca dla ładunków przeciwnych (+/-) a odpychająca dla jednakowych (+/+), (-/-) i działa wzdłuż linii łączącej ładunki. Prawo coulomba W doświadczeniach swoich Coulomb posługiwał się tzw. Wagą Skręceń Reinhard Kulessa
2
Prawo swoje Coulomb sformułował następująco:
Waga Skręceń + + - Równowaga następowała wtedy, gdy moment sił sprężystości nici był równy momentowi związanemu z oddziaływaniem ładunków. Prawo swoje Coulomb sformułował następująco: (4.1) Reinhard Kulessa
3
jest wektorem położonym na linii łączącej dwa oddziałujące ładunki.
Ze znajomości wielkości siły i odległości pomiędzy ładunkami możemy przez definicję stałej k zdefiniować wielkość ładunku. W układzie SI Gdzie c jest prędkością światła w próżni: c = m/s jest przenikalnością elektryczną próżni i jest równe: Reinhard Kulessa
4
Jednostką ładunku w układzie SI jest KULOMB.
Ciało posiada ładunek jednego kulomba jeśli na równy sobie działa z odległości jednego metra siłą Newtona. Prawo Kulomba jest spełnione w fizyce makroskopowej i atomowej z dokładnością jak 1 do 109. Jeśli umieścimy dwa ciała o masach po 1 kilogramie i ładunku jednego kulomba w odległości 1m od siebie, to stosunek siły kulombowskiej do siły grawitacji ma się jak 1019: 1. 1C 1C 1m 1 kg 1 kg Reinhard Kulessa
5
Pole elektryczne 5.1 Natężenie pola elektrycznego
Z prawa Coulomba wiemy, że ładunki oddziałują pomiędzy sobą siłą zależną od wielkości tych ładunków i ich odległości. Możemy więc powiedzieć, że wokół każdego ładunku roztacza się pewien obszar, POLE, w którym na inne ładunki działają siły kulombowskie. Pole wytworzone przez ładunki elektryczne nazywamy polem elektrycznym. Pole takie charakteryzuje się natężeniem informującym nas o wielkości siły działającej na ładunek umieszczony w tym polu. Reinhard Kulessa
6
E F r Q Natężenie pola elektrycznego definiujemy jako stosunek siły
działającej na ładunek próbny q0 umieszczony w polu, do wielkości tego ładunku. z E F q0 r y Q x (5.1) Reinhard Kulessa
7
We wzorze (5.1) granicę dla q0 0 wprowadzamy dlatego, aby otrzymać wartość natężenia pola elektrycznego pochodzącego tylko od ładunku Q . Q2 r Px i Qi Q1 Q4 Q3 r - i x y z Fakt, że natężenie pola elektrycznego jest proporcjonalne do wielkości ładunku, leży u podstawy zasady superpozycji. Zasada ta mówi, że natężenie pola elektrycznego w danym punkcie jest sumą pól pochodzących od poszczególnych ładunków. Reinhard Kulessa
8
Dla układu ładunków punktowych otrzymujemy zgodnie z zasadą superpozycji następujące wyrażenie na natężenie pola elektrycznego: (5.2) Ładunek może być rozłożony nie tylko punktowo, ale również objętościowo lub powierzchniowo. Jeśli zdefiniujemy gęstość ładunku jako (x,y,z) [C/cm3], to ładunek zawarty w elemencie objętości d jest równy: dQ = d. Reinhard Kulessa
9
P r - r d z x Obłok ładunku y
Natężenie pola w punkcie pochodzącego od ładunku rozmieszczonego w objętości dane jest wzorem: x (5.3) Reinhard Kulessa
10
Analogiczny wzór możemy napisać dla ładunku rozłożonego na powierzchni A z gęstością powierzchniową (x,y,z). z Px dA A r Natężenie pola w punkcie P pochodzącego od ładunku rozmieszczonego na powierzchni A dane jest wzorem: y x (5.3a) Reinhard Kulessa
11
5.2 Prawo Gaussa We wzorze (3.1) podaliśmy definicję strumienia dowolnego wektora pola. W ten sam sposób możemy zdefiniować strumień natężenia pola elektrycznego. Prawo Gaussa mówi nam, że: Strumień natężenia pola elektrycznego E przez dowolną powierzchnię, równa się sumie całkowitego ładunku zamkniętego w tej powierzchni, razy stała k. A) dA E Q r0 Reinhard Kulessa
12
W układzie SI otrzymujemy na wartość strumienia w omawianym
(5.5) W układzie SI otrzymujemy na wartość strumienia w omawianym przypadku wartość ( ): Reinhard Kulessa
13
B). Tą samą wartość strumienia natężenia pola elektrycznego otrzymujemy, otaczając ładunek dowolną powierzchnią A. dA`` dA` E dA0 E0 dA Q+ r0 A Reinhard Kulessa
14
C). Wiele ładunków zamkniętych powierzchnią.
Ponieważ E1/r2, stąd wynika, że E=E0(r0/r)2. Z drugiej strony dA’/dA0=(r/r0)2. Wynika z tego, że d= E dA’= E0 dA0. Otrzymujemy więc na strumień natężenia pola elektrycznego taki sam rezultat jak w punkcie A). (5.4a) C). Wiele ładunków zamkniętych powierzchnią. A A’ Reinhard Kulessa
15
Gdzie jest całkowitym ładunkiem.
(5.4b) Gdzie jest całkowitym ładunkiem. D). Ładunki Q znajdujące się poza zamkniętą powierzchnią Zgodnie z C) =0. Przez powierzchnię wychodzi tyle samo linii pola, co wchodzi. A Reinhard Kulessa
16
Jeśli mamy do czynienia z objętościowym rozkładem ładunku
(x,y,z), wtedy przyjmując, że (x,y,z)=dQ/d, równanie (4.5b) przyjmie postać: (5.5) Pamiętamy, że A jest całkowitym polem powierzchni otaczającej ładunek, a całkowitą objętością zajmowaną przez ładunek. Podsumowanie: Strumień natężenia pola elektrycznego przez dowolną powierzchnię, obejmujący dowolny rozkład ładunku, jest niezależny od kształtu tej powierzchni i zależy jedynie od wielkości ładunku położonego wewnątrz powierzchni. Reinhard Kulessa
17
5.3 Prawo Gaussa w postaci różniczkowej
Korzystając z równania (3.8) możemy sformułować twierdzenie Gaussa, które mówi, że całkowity strumień wektora wychodzący przez powierzchnię zamkniętą otaczająca jakiś obszar w polu wektorowym, jest równy rozciągniętej na całą objętość obszaru całce z dywergencji tego wektora. E d dA divE Reinhard Kulessa
18
(5.6) Jeśli porównamy równania (5.5) i (5.6) to otrzymamy różniczkową postać prawa Gaussa. (5.7) Ładunki elektryczne możemy więc nazwać źródłami pola elektrycznego. Gdy nie ma wypływającego z objętości strumienia, nie ma źródeł. Pole v, dla którego div v = 0 nazywamy polem bezźródłowym. Reinhard Kulessa
19
5.4 Twierdzenie Stokes’a A
Analogicznie do związku pomiędzy dywergencją a przestrzenną gęstością strumienia pola wektorowego, istnie je związek pomiędzy składowymi rotacji a powierzchniowymi gęstościami odpowiednich cyrkulacji. Wektor n jest wektorem prostopadłym do elementu powierzchni dA. Wobec tego wektor dA = dA n dA A n Powierzchnia A jest naciągnięta na pętlę rot v Reinhard Kulessa
20
Określa to twierdzenie Stokes’a
(5.8) Pole wektorowe może być polem sił F. Wiemy, że pole wektorowe jest polem bezwirowym, jeśli rotacja tego pola jest równa zero. Dla bezwirowego pola sił (rot F = 0) wynika, że praca siły F po zamkniętym obwodzie jest równa zero. Takie pole sił nazywamy polem zachowawczym. Reinhard Kulessa
21
Natężenie pola elektrycznego ładunku punktowego spełnia tą zależność:
O polu elektrycznym wiemy, że jest polem centralnym. Dla pola centralnego cyrkulacja wektora pola jest równa zero, czyli Natężenie pola elektrycznego ładunku punktowego spełnia tą zależność: Weźmy rozkład linii sił natężenia pola pochodzących od ładunku punktowego. Reinhard Kulessa
22
Krążenie natężenia pola elektrycznego liczymy po zielonym konturze .
Na łukach E Na promieniach przyczynki się nawzajem znoszą. Wynika stąd, że . . Czyli, Pole elektrostatyczne jest więc polem bezwirowym. Reinhard Kulessa
23
5.5 Potencjał skalarny pola elektrycznego.
Z bezwirowości pola elektrostatycznego wynika istnienie potencjału skalarnego V(r) takiego, że; (5.9) 5.5 Potencjał skalarny pola elektrycznego. Do wyrażenia na natężenie pola elektrycznego postaci (5.9) możemy dojść w oparciu o wzór (5.3). (5.3) Reinhard Kulessa
24
Występujący w tym wzorze element objętości d możemy zapisać jako d = d3 = d 1 · d 2 · d 3.
Zauważmy, że dla funkcji występującej pod całką występuje następująca zależność: . Wiedząc, że składowe gradientu są następujące: Reinhard Kulessa
25
, oraz otrzymamy: Reinhard Kulessa
26
W oparciu o podane wyrażenia możemy wzór na natężenie pola
elektrycznego pochodzącego od objętościowego rozkładu ładunków (5.3) napisać następująco: . Funkcję skalarną (5.10) Nazywamy skalarnym potencjałem pola elektrycznego. Reinhard Kulessa
27
Dla pojedynczego ładunku w oparciu o wzór (5.1) mamy:
Analogiczne wyrażenia na potencjał pola dla układu ładunków powierzchniowych, punktowych i dla ładunku pojedynczego możemy wyprowadzić odpowiednio w oparciu o równania (5.3a), (5.2) i (5.1). Dla pojedynczego ładunku w oparciu o wzór (5.1) mamy: Wiadomo, że , Reinhard Kulessa
28
Po wykonaniu całkowania otrzymujemy :
Czyli . . Po wykonaniu całkowania otrzymujemy : Przyjmujemy, że w nieskończoności (r =) potencjał pochodzący od ładunku Q jest równy zero. Musimy wtedy przyjąć, że stała C jest równa zero. Reinhard Kulessa
29
Można łatwo pokazać, że wyrażenie pod całką jest równe czyli ,
Ten sam wynik otrzymamy, jeśli wprowadzimy odpowiednie granice całkowania (5.11) Można łatwo pokazać, że wyrażenie pod całką jest równe czyli , (5.11a) Potencjał określony we wzorze (5.11) jest równy pracy potrzebnej do przeniesienia ładunku jednostkowego q=1C z nieskończoności na odległość r od ładunku Q. Reinhard Kulessa
30
W oparciu o definicję potencjału (5.11a) możemy zdefiniować
różnicę potencjału UAB pomiędzy dwoma punktami pola elektrostatycznego. (5.11b) Ze względu na to, że pole elektryczne jest polem centralnym i ma charakter zachowawczy (r. (5.9) ), tak samo jak w mechanice, praca potrzebna na przesunięcie ładunku w polu jest niezależna od drogi po której ją wykonujemy. Reinhard Kulessa
31
Praca potrzebna do przesunięcia ładunków Q z A do B w polu elektrycznym jest taka sama niezależna od drogi. Q1 Q2 Q3 A Q1 Q2 Q3 B Reinhard Kulessa
32
Praca wykonana na przesunięcie ładunku po drodze zamkniętej jest
Q Praca wykonana na przesunięcie ładunku po drodze zamkniętej jest równa zero Reinhard Kulessa
33
Możemy w oparciu o ostatnie równanie napisać;
Ponieważ ds 2 Możemy w oparciu o ostatnie równanie napisać; 1 (5.12) Dla układu N ładunków punktowych otrzymamy na potencjał w punkcie r wyrażenie: (5.13) Reinhard Kulessa
34
5.5 Równanie Poissona i Laplace’a
Pamiętamy podane w równaniu (5.7) różniczkowe prawo Gaussa. Jeśli do tego równania podstawimy wartość natężenia pola elektrycznego E(r) wyrażone przez potencjał pola V(r) zgodnie ze wzorem (5.9), otrzymamy następujące równanie: (5.14) zwane równaniem Poissona. Reinhard Kulessa
35
Ostatnie równanie możemy napisać w postaci operatorowej.
Z drugiej strony Reinhard Kulessa
36
Operator nosi nazwę laplasjanu.
(5.15) Bardzo często stosuje się zapis . W przypadku pola bezźródłowego równanie Poissona przechodzi w równania Laplace’a. (5.16) Reinhard Kulessa
37
Równanie Poissona i Laplace’a, oraz prawo Gaussa, są trzema
podstawowymi równaniami pola elektrycznego E. Wynikają one bezpośrednio z prawa Coulomba. Wprowadzenie strumienia pola elektrycznego było praktyczne i poglądowe, lecz można się było bez tego obyć. Reinhard Kulessa
38
5.6 Podsumowanie wiadomości o polu elektrycznym
Na poprzednich wykładach poznaliśmy następujące informacje dotyczące pola elektrycznego: Cyrkulacja pola Rotacja pola , definicja pola bezwirowego, pola o zerowej rotacji Twierdzenie Stokes’a, podjące związek pomiędzy całką po konturze, a całką powierzchniową, Definicja gradientu pola, Istnienie dla pola elektrycznego, które jest bezwirowe potencjału skalarnego, którego gradient jest równy natężeniu pola elektrycznego. Reinhard Kulessa
39
Dywergencję funkcji wektorowej,
Prawo Gaussa, również w postaci różniczkowej Twierdzenie Gaussa podające związek pomiędzy całką powierzchniową a objętościową , Definicja potencjału skalarnego pola , Równania Poissona i Laplace’a pozwalające wyliczyć potencjał pola, Rozważmy pole elektryczne, dla którego gęstość ładunku =0. Wtedy dla potencjału spełnione jest równanie Poissona z =0, czyli równanie Laplace’a, V=0 . Jednoznaczne znalezienie potencjału wymaga dodatkowo podania warunków brzegowych, inaczej zawsze można by podać rozwiązanie V0. Reinhard Kulessa
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.