Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałKrzysztof Łosiak Został zmieniony 11 lat temu
1
WYKŁAD XVI Jakie stopnie swobody ma cząsteczka? Co się dzieje gdy atomy lub cząsteczki zamieniaja się w ciało stałe? Jak wygląda struktura elektronowa i oscylacyjna ciała stałego? Jak one na siebie wzajemnie wpływają? Wzmianka o dystorsji Peierlsa. Półprzewodniki. Jak sterować strukturą elektronową ciała stałego? Zaburzenie elektroujemności. Różne metody domieszkowania. Mieszana wartościowość. Dylemat bycia jednym przeciętnym stopniem utlenienia czy dwoma różnymi (delokalizacja / lokalizacja). Mieszaniny metali alkalicznych i ich halogenków.
2
Struktura elektronowa, wibracyjna i rotacyjna molekuł.
H – H T1 S0 H – H H – H u g
3
dyskretne poziomy elektronowe pasma energetyczne b) oscylacje
Przejście fazowe gaz – ciało stałe. Struktura pasmowa i fononowa ciała stałego. dyskretne poziomy elektronowe pasma energetyczne b) oscylacje drgania fononowe c) rotacje i translacje niskoczęstościowe drgania fononowe
4
dyskretne poziomy elektronowe pasma energetyczne
5
E /2a k
6
E E [eV] EF /2a DOS [states/eV] dyspersja pasma
/2a DOS [states/eV] + folding pasm w przestrzeni odwrotnej, dla komórki elementarnej zawierającej 1 atom H (a nie 2)
7
dyspersja pasm mała dyspersja pasm duża
8
H – H + H H – H – H H – H – H H – H – H H – H – H
oscylacje drgania fononowe H – H + H H – H – H H – H – H H – H – H H – H – H stopnie swobody: 9 1 osc., 1 (2 x zdeg.) rot., 3 transl. + 3 translacje 2 osc. rozc., 1 (2 x zdeg.) osc. def., 1 (2 x zdeg.) rot., 3 transl.
9
mod akustyczny mod optyczny
10
H – H + H – H H – H – H – H H – H + H – H H – H – H – H
11
Rozwój widma fononowego 1D polimeru (H)n
12
Dystorsja Peierlsa wzdłuż fononu optycznego dla 1D polimeru (H)n
16
EF isolator semicond. metal supercond.
17
Domieszkowanie półprzewodników
e– doping Ge:Sb Ge:Se h+ doping Ge:Ga Ge:Zn
18
Domieszkowanie półprzewodników, c.d.
e– doping Ge1–As Ga3+{As3–1–} Ti{O1– } vel Ti1+O h+ doping Ge1–Ga {Ga3+1– }As3– {Ti1–}O vel TiO1+ Mieszana wartościowość Mixed–valence or … intermediate valence? PtO = PtIIO ale ‘AgO’ = AgI[AgIIIO2] Insulator to metal transition
19
Electronegativity perturbation (ENP)
Podstawienie dwóch identycznych atomów E przez jeden mniej, a drugi bardziej elektroujemny od E, przy zachowaniu całkowitej ilości elektronów walencyjnych: E + E E– + E+ EN= EN0 Not each isoelectronic substitution is an ENP: =CH2 =NH =O Examples: Molecules. N2 CO BF; C6H6 B3N3H6; c-C6H12 c-Ga3N3H12 Solids. C(diamond) BN; Si AlP; Sn(gray) InSb; Ge(s) GaAs; GaP ZnGeP2; HfO2 HfNCl; 2 K2CrVIO4 K3VVO4 + KMnVIIO4
20
Important consequences of ENP:
many properties of the perturbed & unperturbed system are strongly related, and they are often isostructural; ionicity of the E––E+ bond is larger than that of the E–E bond; charges vary on H atoms bound to E; BN(c) C(diam) C3C3H6 B3N3H6 Be3O3H6
21
- dipole moment (direction of polarization of the E––E+ bond) is most often from E+ to E– (exceptions: CO, BF); occupied orbitals have larger contribution from the AOs of E–, while the unoccupied orbitals from the AOs of E+; the E–-to-E+ charge transfer band appears in electronic spectrum; hyperpolarizability is significantly influenced; (CC)H2 (BN)H2 (BeO)H2 *
22
the HOMO/LUMO gap of a molecule and the electronic band gap of a solid usually increases as compared to the parent compound; Al 1.61 Si 1.90 P 2.19 Ga 1.81 Ge 2.01 As 2.18 In 1.78 Sn 1.96 Sb 2.05 Ge 0.7 eV GaAs 1.4 eV InP 1.3 eV AlSb 1.7 eV SnSi … eV
23
self–organization of the perturbed system enforced via electrostatic interactions, e.g. via “dihydrogen bonding” & increased ease of thermal evolution of H2; H– H+ H+ H– ENP is very strong if E belongs to the lower periods (in particular 2nd one) where large EN differences occur.
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.