Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Rezonator kwarcowy (cz. I.) Opr. Ryszard Chybicki

Podobne prezentacje


Prezentacja na temat: "Rezonator kwarcowy (cz. I.) Opr. Ryszard Chybicki"— Zapis prezentacji:

1 Zespół Szkół Zawodowych w Szczucinie Technikum Zawodowe o profilu Elektronika ogólna

2 Rezonator kwarcowy (cz. I.) Opr. Ryszard Chybicki
Układy elektroniczne Rezonator kwarcowy (cz. I.) Opr. Ryszard Chybicki

3 Cel zajęć: Celem zajęć jest zapoznanie uczniów z problematyką związaną z zastosowaniem naturalnego kryształu kwarcu do budowy rezonatorów kwarcowych, stanowiących jeden z ważniejszych elementów stabilizujących częstotliwość drgań generatorów przebiegów elektrycznych.

4 Plan zajęć: Część 1 - efekt piezoelektryczny
- ważniejsze materiały piezoelektryczne - budowa kryształu kwarcu, osie w krysztale - podstawowe cięcia w krysztale kwarcu, rezonator kwarcowy - podstawowe rodzaje drgań rezonatora kwarcowego Część 2 - elektryczny schemat zastępczy rezonatora - impedancja obwodu zastępczego rezonatora - zastosowanie rezonatora kwarcowego do budowy generatorów przebiegów elektrycznych

5 Co to jest efekt piezoelektryczny?
Efekt piezoelektryczny – zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach tych materiałów w momencie, gdy poddawane są one naprężeniom mechanicznym. Materiały tego typu noszą nazwę piezoelektryków.

6 Płytka piezoelektryka w spoczynku (nie poddana naprężeniom mechanicznym)

7 Odkształcona mechanicznie płytka piezoelektryka

8 Ważniejsze piezoelektryki
Kwarc Jest to polimorficzna odmiana dwutlenku krzemu ( SiO2 ), nazywana niekiedy kryształem górskim. Może być bezbarwny, zabarwiony na fioletowo (ametyst), żółto (cytryn) lub brunatno. Jest jednym z najpospolitszych minerałów na powierzchni Ziemi.

9 Ważniejsze piezoelektryki
Sól Rochelle’a Nazwa ta jest używana nieprawidłowo, gdyż chodzi tu o sól Seignette’a ( KNaC4H4O6 · 4H2O ), czyli winian sodowo-potasowy. Nazwa pochodzi od nazwiska aptekarza Seignette’a z La Rochelle we Francji. Piezoelektryk ten ma postać bezbarwnego kryształu, charakteryzującego się bardzo silnym zjawiskiem piezoelektrycznym. Stosowany bywa m.in. do budowy mikrofonów i głośników krystalicznych. Wadą tego piezoelektryka jest jego silna higroskopijność tzn. zdolność wchłaniania wody.

10 Ważniejsze piezoelektryki
Tytanian baru Otrzymywany syntetycznie kryształ o wzorze BaTiO3. Jest piezoelektrykiem. Posiada także dużą wartość stałej dielektrycznej i jako doskonały dielektryk stosowany jest do budowy kondensatorów elektrycznych.

11 Ważniejsze piezoelektryki
Turmalin Jest to borokrzemiam glinu, sodu, wapnia, magnezu, żelaza i in. Minerał w kolorach czarnym, brunatnym, żółtym, zielonym. Piezoelektryk o właściwościach zbliżonych do kwarcu, lecz znacznie od niego droższy.

12 Porównanie własności najważniejszych piezoelektryków
Największy efekt piezoelektryczny występuje w soli Seignette’a. Efekt piezoelektryczny w kwarcu jest dużo słabszy, lecz znacznie większa trwałość kwarcu, mniejsza wrażliwość na zmianę temperatury i duża dobroć elektrycznego obwodu zastępczego powoduje powszechne stosowanie kwarcu do stabilizacji częstotliwości generatorów. Turmalin jest podobny do kwarcu w swych właściwościach, lecz rzadziej stosowany ze względu na większą cenę.

13 Cechy kryształu kwarcu:
budowa hexagonalna ostrosłupowe ścięcia z obu końców wyodrębnione osie: - jedna optyczna, oznaczona literą Z - trzy elektryczne, oznaczone literą X - trzy mechaniczne, oznaczone literą Y

14 Budowa kryształu kwarcu (bez górnego wierzchołka)

15 Oś optyczna Z to prosta, łącząca oba zaostrzone wierzchołki w krysztale kwarcu. Naprężenia mechaniczne, przyłożone do kryształu wzdłuż tej osi nie powodują zjawiska piezoelektrycznego.

16 Oś elektryczna X to prosta, która łączy przeciwległe wierzchołki sześciokąta, będącego przekrojem kryształu kwarcu w płaszczyźnie prostopadłej do osi optycznej Z

17 Oś mechaniczna Y to prosta, która łączy środki przeciwległych boków sześciokąta, będącego przekrojem kryształu kwarcu w płaszczyźnie prostopadłej do osi optycznej Z.

18 Cięciem w przypadku kwarcu nazywamy operację polegającą na wycięciu z kryształu kwarcu płytki odpowiednio usytuowanej względem osi X, Y i Z.

19 Jeżeli np. wytniemy z kryształu kwarcu cienką płytkę w ten sposób, że jej płaszczyzna jest prostopadła do do osi elektrycznej X, to mamy do czynienia z tzw. cięciem X. W takim przypadku naprężenia mechaniczne, przykładane do tej płytki wzdłuż osi Y będą powodowały powstawanie ładunku elektrycznego na jej ściankach, czyli wystąpi zjawisko piezoelektryczne. Proces ten zachodzi także w kierunku odwrotnym tzn. umieszczenie takiej płytki w polu elektrycznym powoduje powstawanie w niej naprężeń mechanicznych, czyli jej odkształcanie się.

20 Cięcie X w krysztale kwarcu

21 Wymiary płytki rezonatora 430kHz (przykład)

22 Drgania zginania Typ podstawowy

23 Drgania zginania Typ harmoniczny drugi

24 Drgania długościowe Typ podstawowy

25 Drgania długościowe Typ harmoniczny drugi

26 Drgania ścinania m.cz. Typ podstawowy

27 Drgania ścinania m.cz. Typ harmoniczny drugi

28 Drgania ścinania m.cz. wyższego rzędu

29 Drgania ścinania w.cz. Typ podstawowy

30 Drgania ścinania w.cz. Typ harmoniczny drugi

31 Podsumowanie wiadomości na temat kwarcu
Jest najbardziej rozpowszechnionym minerałem Posiada własności piezoelektryczne Charakteryzuje się wieloma rodzajami drgań mechanicznych Nie każdy rodzaj drgań wywołuje w nim efekt piezoelektryczny Między poszczególnymi typami drgań występują sprzężenia mechaniczne, tzn. drgania jednego rodzaju powodują jednocześnie występowanie drgań innego rodzaju (tzw. drgania wtórne).

32 Podsumowanie wiadomości na temat kwarcu
Częstotliwość drgań wtórnych może niekiedy leżeć w pobliżu częstotliwości podstawowej rezonatora, co jest zjawiskiem szkodliwym, zakłócającym drgania podstawowe. Można to zobrazować na wykresie:

33 Widmo częstotliwości cienkiej płytki kwarcowej

34 Podsumowanie wiadomości na temat kwarcu
Szkodliwe częstotliwości drgań wtórnych można eliminować poprzez: właściwy dobór rozmiarów płytki odpowiednie cięcie odpowiednie mocowanie płytki w oprawce

35 Podsumowanie wiadomości na temat kwarcu
Częstotliwość rezonansowa danego typu drgań mechanicznych zależy także od temperatury. Zależność tę określamy współczynnikiem cieplnym częstotliwości. Jego wielkość zależy od: typu drgań mechanicznych rozmiarów płytki zorientowania krawędzi płytki w stosunku do osi kryształu

36 Podsumowanie wiadomości na temat kwarcu
Niektóre rodzaje drgań mają dodatni współczynnik cieplny, inne ujemny. Można więc wyciąć płytkę w taki sposób, aby wystąpiło w niej elastyczne (mechaniczne) sprzężenie między tymi dwoma typami drgań. W ten sposób współczynnik dodatni jednego typu drgań można skompensować współczynnikiem ujemnym innego typu drgań w danym zakresie temperatur. Tak uzyskamy rezonator kwarcowy o zerowym współczynniku cieplnym częstotliwości, co uniezależnia jego częstotliwość drgań od temperatury.

37 Koniec części pierwszej

38 Rezonator kwarcowy (cz. II.)

39 Zauważono, że płytka kwarcowa zachowuje dużą stabilność drgań mechanicznych. Wynika to z faktu, ze w trakcie drgań nie zmienia się ani jej masa, ani jej rozkład geometryczny w objętości płytki, ani także jej rozmiary.Stąd wniosek, że jeżeli stabilne są drgania mechaniczne, to również stabilne będą zmiany ładunku powstającego na jej powierzchniach. Ta elektryczna właściwość płytki kwarcowej zostanie wykorzystana do budowy generatora kwarcowego.

40 Drgająca płytka kwarcowa stanowi mechaniczny obwód rezonansowy, dla którego można stworzyć odpowiednik elektryczny, mający postać szeregowego obwodu rezonansowego, zwanego elektrycznym schematem zastępczym rezonatora kwarcowego.

41 Elektryczny schemat zastępczy

42 Szeregowe połączenie elementów r,L i C stanowi obwód zastępczy drgającej płytki kwarcowej,gdzie: - pojemność C reprezentuje mechaniczne siły sprężystości płytki - indukcyjność L reprezentuje drgającą masę płytki - oporność r reprezentuje wszelkie straty mechaniczne płytki (straty cieplne, tarcie o powietrze, zawieszenie itp.) - pojemność CO jest pojemnością styków

43 Wartości elementów r,L,C w układzie zastępczym zależą od: - sposobu wycięcia płytki - jej wymiarów geometrycznych - rodzaju drgań mechanicznych - sposobu zamocowania płytki

44 Dla przykładu wartości r, L, C i CO układu zastępczego rezonatora kwarcowego 430 kHz wynoszą: indukcyjność zastępcza: L = 3,3 H pojemność zastępcza: C = 0,042 pF oporność strat: r = 387,65 W pojemność oprawek: Co = 5,8 pF dobroć: Q = ( liczba niemianowana )

45 Energia mechaniczna (pobierana, gromadzona i tracona) drgającej płytki kwarcowej jest równa energii elektrycznej (pobieranej, gromadzonej i traconej) zastępczego układu elektrycznego. Zamiast rozpatrywać własności mechanicznie drgającej płytki kwarcowej, można rozpatrzyć własności jej zastępczego układu elektrycznego i na tej podstawie określić jej przydatność do budowy generatora kwarcowego.

46 Jak wspomniano wcześniej, w drgającej płytce kwarcu mogą wystąpić mechaniczne sprzężenia między poszczególnymi typami drgań. To powoduje, że opisany wcześniej prosty elektryczny obwód zastępczy rezonatora kwarcowego nieco się komplikuje, ponieważ należy w nim także uwzględnić rezonanse wyższych rzędów.

47 Schemat zastępczy rezonatora kwarcowego uwzględniający rezonanse wyższych rzędów

48 Przygotowując płytkę należy ją wyciąć w taki sposób, aby praktycznie wyeliminować: a) zaistnienie szkodliwych rezonansów wyższych rzędów b) wpływ temperatury na częstotliwość drgań płytki

49 Impedancja Ž rezonatora

50

51 Podstawiając dane ze schematu zastępczego, otrzymamy:
gdzie:

52 Zależność ïŽ(w) ê: Rezonator 430kHz

53 Rozciągamy oś pulsacji w otoczeniu rezonansu szeregowego, by zbadać zachowanie się charakterystyki

54 ...większe powiększenie...

55 ...jeszcze większe...

56 ...reszta krzywej jest niewidoczna...

57 Przy tym powiększeniu widać, ze dolny wierzchołek krzywej znajduje się ponad osią w (dokładnie na wysokości r)

58 Interesujący jest także przebieg reaktancji X(w) rezonatora w funkcji pulsacji:

59 Zależność reaktancji rezonatora 430kHz
X(w) w Zależność reaktancji rezonatora 430kHz od pulsacji

60 Powiększmy ten fragment przebiegu:

61 rezonans równoległy rezonans szeregowy indukcyjny charakter rezonatora

62 Zbudowany w ten sposób przyrząd, posiadający właściwości obwodu rezonansowego o bardzo dużej dobroci (rzędu dziesiątek i setek tysięcy) służy do budowy generatorów przebiegów okresowych o wysokiej stabilności częstotliwości. W niektórych przypadkach (np. w nadajnikach radiowych), aby jeszcze bardziej poprawić stabilność częstotliwości generatorów, ich rezonatory kwarcowe umieszcza się w naczyniach termostatycznych, gdzie utrzymywana jest stała temperatura.

63 Koniec prezentacji


Pobierz ppt "Rezonator kwarcowy (cz. I.) Opr. Ryszard Chybicki"

Podobne prezentacje


Reklamy Google