Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Teoria chaosu a filozofia
2
„[…] Tam, gdzie zaczyna się chaos, kończy się klasyczna nauka” (Gleick, Chaos, s. 11)
„Teoria chaosu nie tylko wywarła ogromny wpływ na nauki szczegółowe, lecz także w zasadniczy sposób zmieniła nasze filozoficzne poglądy dotyczące możliwości poznawczych nauki, stosowanych w niej metod i wypływającego z niej obrazu świata” (Tempczyk, Teoria chaosu a filozofia, s. 7) Problem uporządkowania i poznawalności świata Trzecia wielka rewolucja naukowa w XX w. ? Teoria chaosu nie dotyczy jednej dyscypliny, lecz ma charakter uniwersalny Nowe narzędzia matematyczne do badania zjawisk nieregularnych
3
Liniowa mechanika klasyczna – deterministyczny (różniczkowy) opis dynamiki układu umożliwia przewidywanie zjawisk (por. demon Laplace’a) Układy nieliniowe – ich zachowanie może być nieprzewidywalne pomimo deterministycznego charakteru równań opisujących dynamikę układu
4
Problem trzech ciał Zagadnienie stabilności Układu Słonecznego)
Zredukowany problem Hilla – ruch ciała o znikomo małej masie m w polu grawitacyjnym dwóch ciał Henri Poincare, Problem trzech ciał i równania dynamiki (1890) Plątanina homokliniczna Skomplikowana dynamika w prostym układzie – pierwsze odkrycie chaosu
5
dx/dt = 10(y – x), dy/dt = – xz + 28x – y, dz/dt = xy – 8/3z
Efekt motyla Eduard Lorenz (meteorolog pracujący w Massachussets Institute of Technology) – prognozowanie pogody przy użyciu komputera (Royal McBee LGP-300) Układ trzech nieliniowych równań różniczkowych modelujących zjawisko konwekcji termicznej w atmosferze: dx/dt = 10(y – x), dy/dt = – xz + 28x – y, dz/dt = xy – 8/3z 1961 – odkrycie wrażliwości układów nieliniowych na warunki początkowe: małe różnice w danych początkowych szybko prowadzą do bardzo dużych różnic w trajektoriach układów Deterministic Nonperiodic Flow, "Journal of the Atmospheric Sesies", 20 (1963), s – początek nowej nauki o chaosie Oryginalną pracę Lorenza można znaleźć po adresem:
7
Układy nieliniowe (równania różniczkowe opisujące dynamikę układów mają charakter nieliniowy) wykazują silną wrażliwość na warunki początkowe – bardzo drobne różnice trajektorii początkowych w krótkim czasie prowadzą do bardzo dużych różnic trajektorii końcowych – następuje wykładnicze rozbieganie się trajektorii. Zachowanie takiego układu szybko staje się nieprzewidywalne pomimo deterministycznego (różniczkowego) opisu dynamiki układu (np. zjawiska pogodowe).
8
Dziwny atraktor Lorenza
Przestrzeń fazowa (p, q) W klasycznej dynamice liniowej atraktorem może być cykl graniczny lub punkt (stan śmieci cieplnej) W dziwnym atraktorze trajektorie „przyciągane” są do niewielkiego obszaru przestrzeni fazowej niezależnie od warunków początkowych (trajektorie nie przecinają się) Dziwny atraktor ma strukturę fraktalną W dłuższych okresach z chaosu rodzi się porządek Pojawienie się atraktora jest nieprzewidywalne
9
Odwzorowanie logistyczne
xn+1 = k xn (1 - xn) 0 < k < 4, odwzorowanie przekształca odcinek [0, 1] w siebie 1845 r. P.I. Verhulst - symulacja wzrostu populacji w ograniczonym środowisku. W postaci dyskretnej: liczba osobników xn+1 w kolejnym roku n+1 jest proporcjonalna do ich liczby w roku poprzednim xn, człon (1-xn) - reprezentuje ograniczający wpływ środowiska np. cykl drapieżca-ofiara, konta bankowe z samoograniczającym się oprocentowaniem itp.). Odwzorowanie logistyczne zależy od r i przy dużych wartościach r (ale r<4) staje się chaotyczne. "Scenariusz Feigenbauma dochodzenia do chaosu" jest uniwersalny dla wszystkich odwzorowań nieliniowych mających pojedyncze maksimum na odcinku [0,1].
13
Odkryto bardzo bogatą strukturę w prostym układzie: chaos wygenerowany przez determinizm i jednoznaczność. Biolog Robert May stosował funkcję logistyczną dla symulacji rozrodczości - długookresowej dynamiki gatunków. Dla (współczynnika rozrodczości) k>3 dynamika staje się bardzo skomplikowana i nie ustala się prosty stan równowagi - mogą pojawiać się cykle dwu-, cztero- ośmioletnie, szczególnie, jeżeli gatunek wpływa na ilość dostępnego mu pożywienia (np. drapieżniki): pojawia się sprzężenie zwrotne. Diagram bifurkacyjny cechuje samopodobieństwo: dowolny jego fragment wygląda jak cały diagram, ma zatem charakter fraktalny.
14
Prosty świat nauki klasycznej
„Filozofia zapisana jest w tej ogromnej księdze, którą stale mamy otwartą przed naszymi oczami; myślę o wszechświecie; lecz nie można jej zrozumieć, jeśli się wpierw rozumieć języka i pojmować znaki, jakimi została zapisana. Zapisana została zaś w języku matematyki, a jej literami są trójkąty, koła i inne figury geometryczne, bez których niepodobna pojąć z niej ludzkim umysłem ani słowa; bez nich jest to błądzenie po mrocznym labiryncie” (Galileo Galilei, Il saggiatore)
15
Fraktale „Ani chmury nie są kulami, linia brzegowa - kołem, kora nie jest płaska, ani też światło nie porusza się po liniach prostych„ (Benoit Mandelbrot, The Fractal Geometry of Nature, 1982)
16
Teoria fraktali – nowe narzędzie matematyczne umożliwia matematyczny opis zjawisk nieregularnych i chaotycznych Rachunek różniczkowy i całkowy nadaje się jedynie do krzywych gładkich, ale są one wyjątkiem bardzo rzadko spotykanym w przyrodzie Dla fraktali nie istnieje kres komplikacji i złożoności Samopodobieństwo - dowolny fragment fraktala wygląda jak cału fraktal - symetria względem skali Mandelbrot: fraktal = przepis na jego konstrukcję F={1/n, b} n - współczynnik zmiejszania, b - ile zmiejszonych części bierzemy do dalszej konstrukcji
24
Konsekwencje filozoficzne
Teoria chaosu jako nowy paradygmat nauki, uzupełniający podejście redukcjonistyczne Zagadnienie stosunku obiektów prostych do złożonych Redukcjonizm: istnienie i własności obiektów złożonych wynikają z istnienia i własności ich części; sukcesy takiego podejścia - teoria atomowej budowy materii Redukcjonizm jest uprawnioną metodą w badaniu układów liniowych, w odniesieniu do układów nieliniowych ma ograniczone zastosowanie, ponieważ: 1. Części w izolacji mogą działać inaczej niż w całości 2. Nieliniowe powiązania prowadzą do nowego sposobu działania całości (nadrzędność całości nad częścią
25
Redukcjonizm - antyredukcjonizm
„[…] najbardziej spektakularnym osiągnięciem redukcjonizmu była teoria atomowej budowy materii, która uporządkowała fizykę i chemię, stając się niekwestionowaną bazą nowoczesnego przyrodoznawstwa. Najpierw zredukowano do atomów wszystkie związki chemiczne, potem wyjaśniono ich własności i strukturę, a następnie […] własności coraz bardziej skomplikowanych obiektów i zjawisk: kryształów, cieczy, struktur komórkowych, procesów fizjologicznych. Jednocześnie fizyka atomów i cząstek schodziła coraz głębiej w strukturę materii, odkrywając jądra atomowe, cząstki elementarne i kwarki. Cała materia układała się w jednolity schemat redukcjonistycznej hierarchii bytów” (M. Tempczyk, Teoria chaosu a filozofia, s. 199)
26
„Nie ma już mowy o redukcji wszystkich rodzajów obiektów, procesów i własności materii do pewnej podstawowej wiedzy o jej najmniejszych fundamentalnych składnikach, ich własnościach i oddziaływaniach. […] Wszechświat jawi się jako całość rozwijająca się zgodnie z autonomicznymi prawami, a w wielu przypadkach ważniejsza od nich” (M. Tempczyk, Teoria chaosu a filozofia, s. 251). Układy złożona mają nowe nieredukowalne własności, wynikające z całościowego działania Samoorganizacja materii Według wielu biologów życie nie jest niesłychanie mało prawdopodobnym przypadkiem, lecz pojawia się wszędzie tam, gdzie istnieją sprzyjające warunki [?]
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.