Pobierz prezentację
OpublikowałMirosława Kołakowski Został zmieniony 11 lat temu
1
ZŁOTA LICZBA Sebastian Nowakowski MiBM Gr. 3 Sem. VI
2
Złoty podział Podział odcinka na takie dwie nierówne części, że stosunek większej części do mniejszej wynosi tyle samo, ile stosunek całego odcinka do większej części nazywa się złotym podziałem (złotym cięciem). Złoty podział wykorzystuje się często w estetycznych, proporcjonalnych kompozycjach architektonicznych, malarskich, fotograficznych. Złota liczba związana ze złotym podziałem zadziwiała przez stulecia matematyków, architektów, botaników, fizyków i artystów niezwykle interesującymi własnościami.
3
Złoty podział odcinka a b a + b a + b a b
Stosunek dłuższej części odcinka do krótszej, jest taki sam, jak stosunek całego odcinka do dłuższej części. liczba wyrażająca stosunek złotego podziału to złota liczba (oznaczana grecką literą φ (fi)).
4
Twórcą rzeźby był Leochares (IV wiek pne.)
Linia I dzieli na dwie części całą postać w złotej proporcji, linia E wskazuje złotą proporcję między głową a górną częścią tułowia, linia O zaznacza podział nóg w kolanach według złotego cięcia.
5
Na wspólnej gałązce między każdymi dwiema parami listków trzecia para leży w miejscu złotego cięcia.
6
W złotym prostokącie stosunek długości do szerokości jest złotą liczbą
a a - b Prostokąt otrzymany po odcięciu możliwie największego kwadratu jest złotym prostokątem
7
Dwudziestościan foremny
Wierzchołki trzech wzajemnie do siebie prostopadłych złotych prostokątów wpisanych w dwudziestościan foremny znajdują się w 12 wierzchołkach tego wielościanu.
8
kolejne punkty wyznaczające złoty podział leżą na spirali równokątnej
9
Liczby Fibonacciego a złoty prostokąt
3 2 8 1 1 5
10
36º A C B D Złoty trójkąt trójkąt równoramienny, w którym stosunek ramienia do podstawy jest równy złotej liczbie to złoty trójkąt. w złotym trójkącie kąt między ramionami ma 36°.
11
Rysunek Leonarda da Vinci
Kanon proporcji
12
Własności złotej liczby
Aby podnieść do kwadratu złotą liczbę, wystarczy dodać do niej jedynkę. Aby znaleźć odwrotność złotej liczby, wystarczy odjąć od niej jedynkę. Potęgi złotej liczby są liniowo zależne od tej liczby. (Współczynniki przy φ, jak i wyrazy wolne, są kolejnymi wyrazami ciągu Fibonacciego).
13
Ciąg Fibonacciego 1, 1, 3, 5, 8, 13, 21, 34, 55, 89, 144, … Liczby z ciągu nazywane są liczbami Fibonacciego, pierwszy i drugi wyraz to 1, każdy następny to suma dwóch poprzednich, postać rekurencyjna ciągu (fn – n-ty wyraz ciągu):
14
Ciąg Fibonacciego a złota liczba
Dzieląc każdą z liczb tego ciągu przez poprzednią otrzymujemy coraz lepsze przybliżenia złotej liczby: 3:2=1,5 5:3=1,(6) 8:5=1,6 13:8=1,625 … 89:55=1,61818… 144:89=1,61797… Wzór ogólny ciągu (φ-złota liczba) – wzór Bineta:
15
Liczby Fibonacciego w przyrodzie
Łuski ananasa, szyszek sosnowych, pestki w słonecznikach tworzą dwa układy linii spiralnych prawoskrętnych i lewoskrętnych. Liczby tych spiral to kolejne liczby Fibonacciego. Liczby Fibonacciego rządzą układem liści prawie wszystkich roślin. Niektóre drzewa rozrastają się według modelu Fibonacciego: każda gałąź przez pierwszy rok jedynie wzrasta, a w każdym następnym roku wypuszcza jedną młodą gałąź.
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.