Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałWaleria Cywka Został zmieniony 11 lat temu
1
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych
Dr inż. Halina Tarasiuk p. 337, tnt.tele.pw.edu.pl
2
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
3
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
4
Podstawowe pojęcia Rozważmy n zmiennych losowych Cel X1, X2, ..., Xn
Dyskusja pewnych charakterystyk dla zmiennej losowej Xi Pewne pomiary zależności, które mogą wystąpić między dwoma zmiennymi losowymi Xi i Xj
5
Podstawowe pojęcia Wartość średnia/wartość oczekiwana Mediana
Wariancja Odchylenie standardowe Kowariancja
6
Wartość średnia/wartość oczekiwana
Wartość średnią lub oczekiwaną zmiennej losowej Xi (gdzie i=1, 2, ..., n) będziemy oznaczać jako i lub E(Xi)
7
Wartość średnia/wartość oczekiwana
Własności Przyjmijmy, że c lub ci oznaczają stałą (liczbę rzeczywistą) (1) (2) nawet jeśli Xi są zależne
8
Wartość średnia/wartość oczekiwana
Przykład Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wartość średnia wynosi: ? Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wartość średnia wynosi: ?
9
Wartość średnia/wartość oczekiwana
Przykład Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wartość średnia wynosi: Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wartość średnia wynosi:
10
Mediana Mediana (zwana też wartością środkową lub drugim kwantylem) to w statystyce wartość cechy w szeregu uporządkowanym, powyżej i poniżej której znajduje się jednakowa liczba obserwacji. Mediana jest kwantylem rzędu 1/2. Aby obliczyć medianę ze zbioru n obserwacji, sortujemy je w kolejności od najmniejszej do największej i numerujemy od 1 do n. Następnie, jeśli n jest nieparzyste, medianą jest wartość obserwacji w środku (czyli obserwacji numer (n+1)/2). Jeśli natomiast n jest parzyste, wynikiem jest średnia arytmetyczna między dwiema środkowymi obserwacjami, czyli obserwacją numer n/2 i obserwacją numer (n/2)+1.
11
Mediana Mediana x0.5 zmiennej losowej Xi jest zdefiniowana jako najmniejsza wartość x, taka że dla zmiennej losowej ciągłej f(x) Obszar=0.5 x x0.5
12
Mediana Przykład Rozważmy zmienną losową X, która przyjmuje wartości 1, 2, 3, 4, i 5 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą ? Rozważmy zmienną losową Y, która przyjmuje wartości 1, 2, 3, 4 i 100 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą odpowiednio ? i ?
13
Mediana Przykład Rozważmy zmienną losową X, która przyjmuje wartości 1, 2, 3, 4, i 5 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą 3. Rozważmy zmienną losową Y, która przyjmuje wartości 1, 2, 3, 4 i 100 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą odpowiednio 22 i 3. W rozważanych przypadkach mediana nie jest wrażliwa na zmianę rozkładu
14
Wariancja Wariancja zmiennej losowej Xi o wartości oczekiwanej zdefiniowana jest następująco Wariancję oznaczamy również jako Var(Xi)
15
Wariancja Wariancja jest miarą zmienności/rozrzutu zmiennej losowej od wartości średniej Im wariancja jest większa, tym zmienna losowa przyjmuje wartości bardziej oddalone od wartości średniej Funkcja gęstości dla zmiennych losowych ciągłych o dużej i małej wariancji
16
Wariancja Przykłady Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wariancja wynosi: E(X2) = ? Var(X) = ? Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wariancja wynosi:
17
Wariancja Przykłady Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wariancja wynosi: E(X2)=43/6 Var(X)=11/12
18
Wariancja Przykłady Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wariancja wynosi: E(X2)=1/3 Var(X)=1/12
19
Wariancja Własności (1) (2) (3)
20
Odchylenie standardowe
Odchylenie standardowe zmiennej losowej Xi definiujemy jako Własności Jest wyrażane w tych samych jednostkach, co wartości cechy
21
Kowariancja Zależność liniowa między zmiennymi losowymi
Kowariancja między zmienną losową Xi i Xj, która jest miarą ich zależności liniowej jest oznaczana jako Cij lub Cov(Xi, Xj) i jest zdefiniowana następująco
22
Kowariancja Jeśli Cij=0, wówczas zmienne losowe są nie skorelowane
Jeśli Cij>0, wówczas zmienne losowe są skorelowane dodatnio Jeśli Cij<0, wówczas zmienne losowe są skorelowane ujemnie
23
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
24
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
25
Analiza wariancji Wyniki symulacji a procesy stochastyczne
Estymacja wartości średniej, wariancji i korelacje
26
Wyniki symulacji a procesy stochastyczne (1)
Ponieważ większość modeli symulacyjnych używa zmiennych losowych jako parametrów wejściowych, wyniki symulacyjne są również losowe Dlatego, należy bardzo ostrożnie wnioskować na podstawie otrzymanych wyników o ich „prawdziwości”
27
Wyniki symulacji a procesy stochastyczne (2)
Proces stochastyczny jest zbiorem „podobnych” zmiennych losowych uporządkowanych w czasie, które są zdefiniowane we wspólnej przestrzeni próby Zbiór wszystkich możliwych wartości, które te zmienne losowe mogą przyjąć określamy jako przestrzeń stanu W przypadku zbioru X1, X2, ... Mówimy o dyskretnym w czasie procesie stochastycznym W przypadku, gdy {X(t), t0}, wówczas mamy ciągły w czasie proces stochastyczny
28
Wyniki symulacji a procesy stochastyczne (3)
Aby wnioskować o danym procesie stochastycznym na podstawie otrzymanych wyników symulacji, często musimy przyjąć pewne założenia, które niekoniecznie muszą być do końca prawdziwe (jednak, często bez takich założeń, analiza statystyczna wyników symulacji byłaby niemożliwa) Przykładem, jest założenie, że proces stochastyczny jest procesem stacjonarnym z punktu widzenia kowariancji
29
Wyniki symulacji a procesy stochastyczne (4)
Mówimy, że dyskretny w czasie proces stochastyczny X1, X2, ... Ma ustaloną kowariancję, jeśli i= dla i=1, 2, ... i -<< i= dla i=1, 2, ... i 2< oraz Ci, j+1=Cov(Xi, Xi+j) dla j=1, 2, ... Czyli dla powyższego procesu wartość średnia i wariancja są ustalone w czasie, zaś kowariancja między Xi i Xj+i zależy tylko od j, nie zaś od rzeczywistego czasu i lub j+i
30
Wyniki symulacji a procesy stochastyczne (5)
Dla procesu stochastycznego o ustalonej kowariancji, kowariancję i korelację między Xi i Xi+j oznaczamy odpowiednio przez Cj oraz j, gdzie
31
Wyniki symulacji a procesy stochastyczne (6)
Jeśli X1, X2, ... stanowią proces stochastyczny zaczynający się w zerowej chwili czasowej symulacji jest bardzo prawdopodobne, że proces nie jest procesem o ustalonej kowariancji Jednakże dla pewnych symulacji proces Xk+1, Xk+2 będzie w przybliżeniu procesem o ustalonej kowariancji jeśli k jest wystarczająco duże, gdzie k jest długością tzw. czasu rozbiegu
32
Estymacja wartości średniej, wariancji i korelacje (1)
Załóżmy, że X1, X2, ..., Xn są zmiennymi losowymi niezależnymi o takim samym rozkładzie (obserwacjami) o średniej dla skończonej populacji i o wariancji 2 dla skończonej populacji oraz, że naszym głównym celem jest oszacowanie , zaś oszacowanie 2 jest kolejnym celem.
33
Estymacja wartości średniej, wariancji i korelacje (2)
Wówczas wartość średnia dla próby jest tzw. estymatorem nieobciążonym (punktowym) wartości , czyli Intuicyjnie, jest nieobciążonym estymatorem średniej wówczas, gdy wykonamy bardzo dużą liczbę niezależnych eksperymentów, z których każdy da wynik Wówczas średnia z otrzymanych powinna wynieść
34
Estymacja wartości średniej, wariancji i korelacje (3)
Podobnie wariancja próby jest nieobciążonym estymatorem 2, dopóki E[S2(n)]= 2
35
Estymacja wartości średniej, wariancji i korelacje (4)
Problem z użyciem jako estymatora bez żadnej dodatkowej informacji polega na tym, że nie ma sposobu na określenie jak bardzo jest zbliżone do Ponieważ jest zmienną losową o wariancji Dlatego typowym podejściem dla udowodnienia dokładności estymatora wobec jest zastosowanie tzw. przedziałów ufności
36
Estymacja wartości średniej, wariancji i korelacje (5)
Jednakże pierwszym krokiem do stworzenia przedziałów ufności jest estymacja wariancji wartości średniej. Ponieważ
37
Estymacja wartości średniej, wariancji i korelacje (6)
Ogólnie im większy rozmiar próby, n, tym bliższym oszacowaniem będzie Ponadto nieobciążony estymator wariancji jest oszacowywany przez zastąpienie 2 przez S2(n)
38
Estymacja wartości średniej, wariancji i korelacje (7)
Ostatecznie Należy zauważyć, że powyższe wyrażenie ma w mianowniku n i n-1 ze względu na Xi jak i
39
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
40
Przedziały ufności (1) Przedziały ufności dla
Załóżmy, że X1, X2, ..., Xn są zmiennymi losowymi niezależnymi o takim samym rozkładzie (obserwacjami) o skończonej średniej i o skończonej wariancji 2 oraz, że 2 >0
41
Przedziały ufności (2) Graniczne twierdzenie centralne
Niech Zn będzie zmienną losową i niech Fn(z) będzie dystrybuantą zmiennej losowej Zn dla próby o rozmiarze n
42
Przedziały ufności (3) Graniczne twierdzenie centralne
jeśli n jest wystarczająco duże wówczas zmienna losowa Zn będzie miała rozkład zbliżony do rozkładu normalnego Na podstawie teorii możemy przyjąć, że zmienna losowa ma w przybliżeniu rozkład normalny z wartością średnią i wariancją 2/n
43
Przedziały ufności (4) Graniczne twierdzenie centralne
Trudność w zastosowaniu tej teorii polega na tym, iż w praktyce wariancja 2 jest nieznana. Jednak dla dużego n 2 możemy zastąpić przez wariancję próbkową w wyrażeniu na Zn Po tych zmianach teoria mówi, że dla wystarczająco dużego n, zmienna losowa tn ma rozkład zbliżony do rozkładu normalnego
44
Przedziały ufności (5) Dla dużego n gdzie 0<<1
45
Przedziały ufności (6) Dlatego też dla wystarczająco dużego n przybliżony przedział ufności na poziomie ufności 100(1-) procent dla wynosi
46
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
47
Praktyczne zastosowanie rozkładu t-Studenta (1)
W praktyce trudno jest określić, co oznacza wystarczająco duża liczba prób n Dlatego dla oszacowania przedziałów ufności stosuje się rozkład t-Studenta z n-1 stopniami swobody
48
Praktyczne zastosowanie rozkładu t-Studenta (2)
Jeśli Xi są zmiennymi losowymi o rozkładzie normalnym, zmienna losowa ma rozkład t z n-1 stopniami swobody, wówczas dokładny przedział ufności na poziomie 100(1-) dla wynosi
49
Praktyczne zastosowanie rozkładu t-Studenta (3) - przykład
Dla 10 prób należy wyznaczyć wartości liczbowe końcowe przedziału ufności dla wartości średniej przyjmując poziom ufności 1-=0.95. Wartości zmiennej losowej wynoszą odpowiednio:
50
Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności
Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników
51
Rodzaje symulacji a analiza wyników
Symulacja przerywana Parametry ustalone Symulacja nieprzerywalna Parametry dla ustalonego cyklu Inne parametry
52
Rodzaje symulacji a analiza wyników
Symulacja przerywana W symulacji tej zdefiniowane jest pewne „naturalne” zdarzenie E, które określa długość każdej symulacji (powtórzenia)
53
Symulacja przerywana Analiza statystyczna Założenia
Przeprowadzamy n niezależnych przerywanych symulacji Każde powtórzenie jest przerywane przez zdarzenie E i rozpoczyna się z tymi samymi warunkami początkowymi. Niezależność powtórzeń jest osiągana przez użycie innych liczb losowych dla każdego powtórzenia Dla uproszczenia przyjmijmy, że realizujemy pomiar jednej metryki Niech Xj będzie zmienną losową zdefiniowaną dla j-tego powtórzenia, j=1, 2, ..., n. Przyjmuje się, że Xj są porównywalne dla różnych powtórzeń Wówczas Xj są zmiennymi losowymi IID (independent and identicaly distributed)
54
Symulacja przerywana Estymacja wartości średniej
Odbywa się na podstawie rozkładu t-Studenta
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.