Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.

Podobne prezentacje


Prezentacja na temat: "Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model."— Zapis prezentacji:

1 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model stanu (przestrzeni stanu) - odpowiedzi Poszukujemy rozwiązań x – stany u – wejścia y - wyjścia Rozważmy najpierw przypadek skalarny (jednowymiarowy, rzędu pierwszego) Klasyczne podejście 1.

2 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 2 2. 3. Składowa swobodna Składowa wymuszona

3 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 3 4.

4 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 4 Przykład v C (0 - ) = 1V x(t) = u c (t)

5 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 5

6 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 6 System ciągły; model stanu (przestrzeni stanu) – odpowiedzi Poszukujemy rozwiązań x – stany u – wejścia y - wyjścia Weźmy równanie stanu: Rozwiązanie: Składowa swobodna Składowa wymuszona

7 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 7 Składowa swobodna – rozwiązanie równania jednorodnego Rozwiązanie równania jednorodnego proponujemy w postaci: gdzie Sprawdzenie

8 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 8 Rozwiązanie ogólne – rozwiązanie równania jednorodnego, zatem: gdzie Przejdziemy do wyznaczenia rozwiązania szczególnego – składowej wymuszonej – rozwiązania równania niejednorodnego Rozwiązanie równania niejednorodnego proponujemy w postaci:

9 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 9 Rozwiązanie to musi spełniać równanie niejednorodne z drugiej strony, podstawiając proponowane rozwiązanie do równania stanu porównując

10 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 10 podstawiając ostatni wynik do proponowanego rozwiązania Rozwiązanie szczególne – rozwiązanie równania niejednorodnego, zatem: Podsumowując – rozwiązanie równania stanu Składowa swobodna Składowa wymuszona

11 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 11 Weźmy równanie wyjścia: Wyjście policzymy podstawiając uzyskany wynik rozwiązania równania stanu Podsumowanie:

12 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 12 Kluczowy problem przy korzystaniu z tego rozwiązania – obliczenie - macierz tranzycji stanu – macierz fundamentalna I sposób – z definicji szeregu wykładniczego

13 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 13 Przykład 1: Model części mechanicznej silnika prądu stałego, przy zaniedbaniu dynamiki obwodu twornika, wpływu na ten odwód obwodu wzbudzenia i pominięciu momentu obciążenia zewnętrznego można zapisać Przyjmując: otrzymamy Przyjmijmy dla uproszczenia rachunków: oraz

14 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 14 Policzmy potęgi A:

15 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 15 Korzystamy z definicji Czasem nie ma potrzeby liczenia granicy szeregu Przykład 2:

16 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 16 Policzmy potęgi A:

17 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 17 Szereg potęgowy zawiera skończoną liczbę wyrazów

18 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 18 Wynik ten można uogólnić na dowolne n

19 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 19 II sposób pokażemy znajdując najpierw model przestrzeni stanu w dziedzinie zmiennej s

20 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 20 Przez porównanie rozwiązania równania stanu i wyjścia Możemy napisać

21 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 21 Przykład 3: macierz dołączona wyznacznik

22 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 22 Otrzymujemy:

23 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 23 Rozkład na ułamki proste elementów macierzy Podobnie

24 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 24 Otrzymujemy Ostatecznie macierz tranzycji

25 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 25 Przykład 4: Policzmy najpierw: Policzymy odpowiedzi układu przy zadanych warunkach początkowych na jednostkowe wymuszenie skokowe

26 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 26 Stąd: Stąd bezpośrednio:

27 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 27 Dla podanych warunków początkowych składowa swobodna odpowiedzi stanu i wyjścia :

28 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 28 Dla skokowego jednostkowego wejścia transformata Laplacea składowej wymuszonej odpowiedzi stanu i wyjścia (w dziedzinie zmiennej s)

29 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 29 Dla skokowego jednostkowego wejścia składowa wymuszona odpowiedzi stanu i wyjścia Pełna odpowiedź stanu i wyjścia

30 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 30 Związki z transmitancją Dla układu SISO: Odpowiedź wyjścia: Funkcja przejścia - transmitancja Funkcja tranzycji stanu

31 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 31 Otrzymaliśmy: Transmitancja: Odpowiedź impulsowa:

32 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 32 System dyskretny; model stanu (przestrzeni stanu) – odpowiedzi Poszukujemy rozwiązań Będziemy przyjmowali: Rozwiązanie równania stanu w postaci rekursywnej:

33 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 33 W ogólnej postaci: Macierz tranzycji stanu: Jest to odpowiednik w dziedzinie czasu ciągłego macierzy Porównanie odpowiedzi stanu Składowa swobodna Składowa wymuszona

34 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 34 Odpowiedź wyjścia: Możemy np. policzyć odpowiedź wyjścia na sekwencję impulsu jednostkowego:

35 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 35 Transformata Z Odpowiednikiem transformacji s Laplacea dla systemów ciągłych jest transformacja z dla systemów dyskretnych Interesują nas podobnie: sygnały o wartości zero dla ujemnych chwil czasowych i jednostronna transformacja z Dwa alternatywne sposoby zdefiniowania: Definicja 1: Mając daną sekwencję sygnałów jej transformację z definiujemy jako Zmienną z -1 możemy traktować w podanej definicji jako operator opóźnienia w czasie – wskaźnik pozycji sygnału w sekwencji

36 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 36 Pożytki: Zastąpienie nieskończonego ciągu, jego sumą (szeregiem) mogącą mieć użyteczną postać do analizy Pytania: - istnienie sumy – zbieżność szeregu - możliwość odtworzenia z wynikowego wyrażenia zmiennej z, elementów sekwencji w dziedzinie czasu

37 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 37 Definicja druga związana jest z sekwencją uzyskaną z próbkowania z okresem T s sygnału ciągłego i transformacją Laplacea gdzie Ilustracja związków dziedzina ciągła – dziedzina dyskretna poprzez idealny impulsator

38 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 38 Transformacja Laplacea tej sekwencji dana jest Definiując zmienną z Otrzymujemy Definicja 2: Mając daną sekwencję sygnałów z próbkowania ciągłej funkcji f(t) z okresem T s w postaci

39 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 39 Doszliśmy do określenia transformacji z lub z zastrzeżeniem, że transformata z istnieje tylko wtedy, gdy istnieje pewne z dla którego szereg z definicji jest zbieżny

40 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 40 Szereg geometryczny zbieżny Przykład 5 Rozważmy sekwencję skoku jednostkowego z określonym okresem próbkowania Mamy Jeżeli szereg jest zbieżny i transformata z istnieje

41 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 41 Przykład 6 Rozważmy funkcję Przy próbkowaniu z okresem Transformata z Jeżeli szereg jest zbieżny i transformata istnieje

42 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 42 Transformaty z wybranych sekwencji sygnałów Sekwencja Transformata Z

43 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 43 Wybrane właściwości - transformaty z funkcji przesuniętych w czasie gdzie k jest dodatnie oraz - przesunięcie wstecz - przesunięcie wprzód - twierdzenie o wartości początkowej - twierdzenie o wartości końcowej

44 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 44 Korzystając z definicji i podanych własności możemy dokonać transformacji dyskretnego równania stanu i znaleźć jego odpowiednik w dziedzinie zmiennej z otrzymamy Ostatnie równanie może być rozwiązane względem transformaty X(z) Wprowadzając oznaczenie Możemy to rozwiązanie zapisać w postaci

45 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 45 Równanie wyjścia w dziedzinie zmiennej z

46 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 46 Przez porównanie rozwiązania równania stanu i wyjścia Możemy napisać

47 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 47 Dla skorzystania z tej ostatniej zależności potrzebna jest umiejętność przeprowadzania transformacji odwrotnej z, czyli znajdowania wartości funkcji w chwilach próbkowania Transformacja odwrotna znajduje tylko wartości funkcji w chwilach próbkowania, ale nie umożliwia znalezienia okresu próbkowania Dla znajdowania wartości funkcji w chwilach próbkowania – sekwencji wartości, praktycznie znajduje się wykorzystując dzielenie wielomianów rozkład na ułamki

48 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 48 Dzielenie wielomianów Z definicji transformacji Z Jeżeli w jakiś sposób potrafimy przedstawić funkcję F(z) w postaci to jest oczywiste, że Jeżeli F(z) jest funkcją wymierną – ułamkiem wielomianów, to wartości c i mogą być znalezione drogą dzielenia wielomianów

49 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 49 Przykład 7 Znaleźć f[k] - dzielimy licznik i mianownik przez największa potęgę z

50 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 50 - dzielimy licznik przez mianownik

51 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 51 - obliczamy wartość początkową Otrzymaliśmy

52 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 52 rozkład na ułamki Metoda prawie identyczna to metody używanej w odwrotnej transformacji Laplacea Ponieważ większość funkcji z ma składnik z w liczniku, jest czasem dogodniej przeprowadzać rozkład na ułamki proste dla F(z)/z niż dla F(z) Procedura 1. znaleźć rozkład na ułamki proste F(z)/z lub F(z) 2. określ odwrotną transformatę f[k] korzystając z tablic transformat z

53 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 53 Przykład 8 Przypadek: pojedyncze pierwiastki rzeczywiste Znaleźć transformatę odwrotną funkcji: - rozkład na ułamki proste z dzieleniem F(z)/z

54 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 54 stąd - spojrzenie w tablice Można zauważyć zatem

55 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 55 bez dzielenia F(z) - rozkład na ułamki proste stąd

56 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 56 - spojrzenie w tablice zatem

57 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 57 Wyprowadziliśmy uprzednio równanie stanu i równanie wyjścia dla systemu dyskretnego Odwrotna transformacja Z wyprowadzonych równań

58 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 58 Dla warunku początkowego Funkcja przejścia - transmitancja Wyjście Wejście Transmitancja systemu dyskretnego Transformata wyjścia systemu dyskretnego

59 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 59 Model dyskretny systemu ciągłego (patrz Podstawy modelowania i identyfikacji) Odpowiedź stanu systemu ciągłego (t 0 = 0) lub Dla dwóch kolejnych chwil próbkowania Przemnażając przez wyrażenie na i odejmując od wyrażenia na

60 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 60 Przyjmując, że u(t) jest stałe pomiędzy chwilami próbkowania Odpowiedź stanu systemu ciągłego (t 0 = 0) Zmieniając zmienna całkowania Definiujemy macierze możemy napisać równanie stanu lub w postaci uproszczonej

61 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 61 Odpowiadające równanie wyjścia przy czym Dla wartości własnych macierzy A oraz A D zachodzi (twierdzenie Frobeniusa)

62 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 62 Podsumowanie Mając model systemu ciągłego: Model systemu dyskretnego: przy czym:

63 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 63 Przykład 9 Dany jest model transmitancyjny systemu ciągłego Zbudować model stanu ciągły i dyskretny Metoda zmiennej pomocniczej

64 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 64 Zmienne stanu Równania stanu w dziedzinie zmiennej s Równania stanu w dziedzinie zmiennej t Równania wyjścia w dziedzinie zmiennej s Równania wyjścia w dziedzinie zmiennej t

65 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 65 Ostatecznie Macierz tranzycji w dziedzinie zmiennej s (rezolwenta) Macierz tranzycji w dziedzinie zmiennej t

66 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 66 Wprowadzenie impulsatora i ekstrapolatora zerowego rzędu Dla okresu próbkowania T s = 1s

67 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 67

68 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 68 Przykład 10 Dany jest model systemu ciągłego w przestrzeni stanu Znaleźć odpowiedź modelu dyskretnego na wymuszenie skokowe jednostkowe Wartości własne systemu są zespolone, sprzężone Układ drugiego rzędu oscylacyjny, o pulsacji drgań nietłumionych i współczynniku tłumienia odpowiednio

69 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 69 Dyskretyzacja z wprowadzeniem impulsatora i ekstrapolatora zerowego rzędu Dla T s = 0.1 otrzymamy I oczywiście

70 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 70 Wartości własne macierz A D Sprawdzić! Stan i wyjście policzymy rekurencyjnie, zakładając zerowe warunki początkowe

71 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 71 Wynik

72 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 72 Przebieg zmiennych stanu, T s = 0.1s

73 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 73 Przebieg zmiennej wyjścia, T s = 0.1s

74 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 74 Przebieg zmiennej wyjścia, T s = 0.5s

75 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 75 Przebieg zmiennej wyjścia, T s = 2s

76 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 76 Transmitancja, T s = 0.1s

77 Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 77 Ostatecznie


Pobierz ppt "Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model."

Podobne prezentacje


Reklamy Google