Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Układy cząstek.

Podobne prezentacje


Prezentacja na temat: "Układy cząstek."— Zapis prezentacji:

1 Układy cząstek

2 Środek masy Środek masy ciała lub układu ciał to punkt, który porusza się tak, jak gdyby była w nim skupiona cała masa układu, a wszystkie siły zewnętrzne były przyłożone w tym punkcie.

3 Środek masy – dwie cząstki
mu – masa układu

4 Środek masy – n cząstek W 3D:

5 Środek masy – ciała rozciągłe
W 3D: mu – masa całego ciała Środek masy nie musi leżeć w obrębie tego układu.

6 Środek masy a równowaga
Chwiejna (nietrwała) Stabilna (trwała)

7 Lewitacja na krześle

8 Lewitacja na krześle Ciało jest w równowadze, gdy jego środek ciężkości (masy) znajduje się nad jego podstawą.

9 Skok wzwyż Skok wzwyż techniką Fosbury flop - środek masy przechodzi pod porzeczką

10 Pęd Pęd cząstki: p = mv W jęz. francuskim Quantité de mouvement - ilość ruchu II zasada dynamiki: Szybkość zmian pędu cząstki jest równa wypadkowej sił działających na cząstkę i ma kierunek tej siły.

11 Pęd Wyrażenia Fwyp = dp/dt i Fwyp = ma są równoważnymi postaciami II zasady dynamiki.

12 Pęd i popęd F = Dp/Dt F Dt = Dp popęd siły zmiana pędu
„Siła pomnożona przez czas jej działania jest równa zmianie pędu”

13 Zmiana pędu F Dt F Dt

14 Pęd układu cząstek Pęd układu cząstek: P = muvŚM II zasady dynamiki:
Fwyp = dP/dt = muaŚM Fwyp – wypadkowa sił zewnętrznych działających na układ. Siły działające między składnikami układu cząstek (siły wewnętrzne) nie występują w równaniu.

15 Zachowanie pędu Jeżeli układ jest izolowany (nie działają siły zewnętrzne) i zamknięty (cząstki nie przybywają i nie ubywają): Fwyp = dP/dt = 0 pęd układu się nie zmienia! Inny zapis: P = const lub Ppocz = Pkońc Zasada zachowania pędu: Jeżeli na układ cząstek nie działają siły zewnętrzne lub ich wypadkowa jest równa zeru, to całkowity pęd P układu nie ulega zmianie.

16 Zasada zachowania pędu - przykłady

17 Zderzenia Zderzenie zachodzi, gdy dwa lub więcej ciał działa na siebie stosunkowo dużymi siłami w stosunkowo krótkim czasie.

18 Zderzenia sprężyste i niesprężyste
Zderzenie, w którym całkowita energia kinetyczna układu nie zmienia się w wyniku zderzenia, nazywane jest zderzeniem sprężystym.

19 Zderzenia sprężyste i niesprężyste
Zderzenie, w którym całkowita energia kinetyczna układu nie jest zachowana (zmienia się) w wyniku zderzenia, nazywane jest zderzeniem niesprężystym. Crash at Crush,

20 Zamiana energii kinetycznej na energię termiczną w zderzeniu niesprężystym

21 Zderzenia - zachowanie pędu
Jeśli zderzenie zachodzi w układzie zamkniętym (masa nie ulega zmianie) i izolowanym (wypadkowa sił zewnętrznych działająca na ciała w układzie jest równa zeru), to pędy zderzających się ciał mogą się zmieniać, lecz całkowity pęd układu P nie może ulec zmianie, niezależnie czy zderzenie jest sprężyste, czy niesprężyste.

22 Zderzenia niesprężyste
Zasada zachowania pędu: p1pocz + p2pocz = p1końc + p1końc m1v1pocz+ m2v2pocz= m1v1końc+ m2v2końc Niech przed zderzeniem m2 pozostaje w spoczynku tzn. v2pocz= 0. Wspólną prędkość przylegających do siebie ciał po zderzeniu oznaczmy V. m1v1pocz = (m1 + m2)V Wniosek: V < v1pocz

23 Zderzenia sprężyste Zasada zachowania pędu:
p1pocz + p2pocz = p1końc + p2końc m1v1pocz+ m2v2pocz= m1v1końc+ m2v2końc Zachowanie energii kinetycznej: m1v21pocz+ m2v22pocz= m1v21końc+ m2v22końc

24 Zderzenia sprężyste Niech przed zderzeniem m2 pozostaje w spoczynku tzn. v2pocz= 0: m1v1pocz= m1v1końc+ m2v2końc m1v21pocz= m1v21końc+ m2v22końc Rozwiązanie:

25 Zderzenia sprężyste I. Ciała o jednakowych masach:
Wniosek: ciała ‘wymieniają’ się prędkościami II. Ciało m2 ma bardzo dużą masę Wniosek: ciało 1 odbija się, ciało 2 ma małą prędkość

26 Zderzenia sprężyste III. Ciało m1 ma bardzo dużą masę
Wniosek: ciało 1 porusza się do przodu, bez zmiany prędkości, ciało 2 ma 2 razy większą prędkość niż ciało 1


Pobierz ppt "Układy cząstek."

Podobne prezentacje


Reklamy Google