Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałMartyna Rocławski Został zmieniony 9 lat temu
1
Astronomia gwiazdowa i pozagalaktyczna II 10.03.2014 Galaktyki – własności I
2
Jasności galaktyk Jasność Drogi Mlecznej: ~ 10 11 gwiazd o jasnościach ~ 2 x 10 10 L sun. Jasność absolutna Słońca to ~ 5.48. Stąd szacujemy, że nasza galaktyka ma jasność absolutną -20,3. M31: M = -20.8, Obłoki Magellana: M=-18 i -16.5. Istnieją też masywne galaktyki eliptyczne o M ~-24 (bardzo rzadko spotykane, np. w centrach gromad). Oraz karłowate galaktyki nieregularne albo eliptyczne o jasnościach schodzących do -8. Najsłabsza znana karłowata galaktyka eliptyczna (dwarf spheroidal): M~10 -5 *M31.( ~ 10 5 L sun ) Dolna granica nie jest jeszcze dobrze poznana.
3
Galaktyki: rozmiary kątowe Galaktyki nie mają widocznych wyraźnych brzegów; ich jasność słabnie stopniowo Re Promień koła, z którego pochodzi Połowa całkowitego strumienia światła od danej galaktyki często nazywa się efektywnym promieniem R e i używa jako wyznacznika wielkości kątowej galaktyki.
4
Krzywe jasności galaktyk (eliptycznych) Galaktyki eliptyczne: jasność powierzchniowa: Prawo Hubble'a: rozkład wzdłuż wielkiej półosi galaktyki: r c = promień zagęszczenia centralnego (słabo się sprawdza do fitowania jasności części zewnętrznych)
5
Krzywe jasności galaktyk (eliptycznych) Galaktyki eliptyczne: jasność powierzchniowa: De Vaucouleurs: prawo r 1/4 : r e – promień efektywny odpowiadajaca jasność całkowita galaktyki: gdzie b i a = półosie wielka i mała elipsy
6
Krzywe jasności galaktyk (spiralnych) Galaktyki spiralne i soczewkowate: Opisujemy osobno element sferoidalny (zgrubienie centralne) i osobno dysk Zgrubienie centralne – podobnie jak galaktyka eliptyczna (np. prawo r 1/4 de Vaucouleursa) Dysk niemal zawsze da się opisać eksponencjalnie: gdzie h = tzw. skala dysku albo stała zaniku jasności w dysku (dla Drogi Mlecznej h = 3 kpc); I 0 = jasność powierzchniowa w centrum
7
Krzywe jasności galaktyk (spiralnych) Galaktyki spiralne i soczewkowate: Jasność całkowita dysku: Krzywe jasności niektórych galaktyk późnych typów, jak Irr I (Obłoki Magellana) daje się opisać w podobny sposób
8
Krzywe jasności galaktyk (spiralnych) Galaktyki spiralne i soczewkowate: jasność powierzchniowa części centralnej I 0 Freeman (1970): mimo dużego rozrzutu jasności dysków galaktyk, jasność powierzchniowa różni się niewiele (F.: I 0 = 21.67+/-0.3 mag/arcsec 2 w filtrze B) Potwierdzone dla niekarłowatych galaktyk najniższe znane zwyklej galaktyki I 0 = 25.5 mag/arcsec 2 w filtrze B Rozkłady jasności pow. galaktyk z różnych przedziałów jasności (Driver et al. 2004)
9
Ale: NIE sprawdza sie dla LSBG Odkrycie LSBG dowiodlo, ze “regule Freemana” mozna stosowac tylko do pewnej klasy galaktyk
10
Jasności powierzchniowe galaktyk – wzór Sérsica Generalizacja wzoru de Vaucouleursa, działająca zarówno dla galaktyk eliptycznych, jak i spiralnych: n = parametr Sérsica (Sérsic index) n=4 -> wzór de Vacouleursa n=1 -> wzrór eksponencjalny dla dysków galaktyk spiralnych
11
Jasności powierzchniowe galaktyk – parametr Sérsica Millennium Galaxy Catalog: 10095 galaktyk do M_B = 20; Driver et al. 2006
12
Masy galaktyk Gromady gwiazd Galaktyki Gromady galaktyk Zakładamy, że są w stanie równowagi dynamicznej pod wpływem grawitacji Prędkości składników + rozmiary obiektu => masa
13
Masy galaktyk Potwierdzenie: porównanie czasu charakterystycznego (dla zderzeń) z wiekiem obiektu Gdzie: R = wielkość galaktyki, = średnia prędkość gwiazd Dla Drogi Mlecznej: Odległość Słońca od centrum ~8,5 kpc, prędkość sąsiednich gwiazd v~220 km/s Czas potrzebny na okrążenie centrum Galaktyki: t=2 π R/v = 2,5*10^8 lat (250 mln lat)~t_cr => t<<wieku Drogi Mlecznej = 1,3*10^10 lat (~13 mld lat) => nasz system (Droga Mleczna) jest związany grawitacyjnie
14
Masy galaktyk Gromada galaktyk Coma: t_cr ~0,1 wieku Wszechświata => gromada musi być związana grawitacyjnie (bo inaczej galaktyki dawno by się rozproszyły).
15
Masy galaktyk: twierdzenie o wiriale Układ mas m_i o położeniach r_i (wektor, względem centrum układu) Zdefiniujmy F_i = siła, działająca na ciało ze strony całej reszty układu Wtedy z prawa Newtona: Mnożymy skalarnie stronami przez r_i i po paru przekształceniach dostajemy:
16
Masy galaktyk: twierdzenie o wiriale Sumujemy po i oraz uśredniamy po czasie, zauważając, że dr_i/dt = v_i: Równowaga statystyczna => całkowity rozkład masy (czyli suma m_i*r_i) fluktuuje wokół jakiejś średniej wartości -> jego pochodna po czasie się zeruje
17
Masy galaktyk: twierdzenie o wiriale Dzieląc jeszcze przez 2, dostajemy twierdzenie o wiriale: Suma energii kinetycznych układu = całkowita energia kinetyczna układu WIRIAŁ ~ grawitacyjna energia potencjalna T = ½ |U|
18
Twierdzenie o wiriale Twierdzenie o wiriale opisuje bilans energii w systemie w stanie równowagi dynamicznej Dla układu mas oddziałujących grawitacyjnie można też zapisać (korzystając z III prawa Newtona: F_ij = F_ji):
19
Twierdzenie o wiriale I twierdzenie o wiriale możemy zapisać jako:
20
Twierdzenie o wiriale W praktyce stosowanie twierdzenia o wiriale nie jest takie oczywiste, ponieważ: - nie jesteśmy w stanie zmierzyć dokładnie prędkości gwiazd/galaktyk (przesunięcia Dopplera, czasami ruchy własne na niebie) nie jesteśmy w stanie pomierzyć wszystkich składników układu (ani nawet nie możemy ocenić, czy próba jest statystycznie wystarczająca) nie zawsze (np. w przypadku gromad galaktyk) mamy pewność, że badane galaktyki do nich należą (interlopers)
21
Twierdzenie o wiriale Ale w większości wypadków możemy dokonać przejścia: =Całkowita masa układu M * uśredniona po czasie i układzie prędkość =G*M 2 /R, gdzie R – wielkość układu Osobny problem: jak oszacować tę średnią prędkość na podstawie mierzonych prędkości -> stąd dodatkowe cyferki w równaniu
22
Zastosowania twierdzenia o wiriale: krzywe rotacji galaktyk spiralnych Krzywa rotacji: zależność prędkości rotacji gwiazd wokół centrum galaktyki (ogólniej – dowolnego ciała w dowolnym układzie), v rot (r), od odległości od centrum r
23
Zastosowa nia twierdzenia o wiriale: krzywe rotacji galaktyk spiralnych
25
Jeśli założymy (dla uproszczenia) sferyczną symetrię galaktyki, to tw. o wiriale możemy zapisać jako: G*M(<r)/r 2 = v 2 rot (r)/r Czyli: M(<r) = v 2 rot (r)*r/G Możemy policzyć masę galaktyki M Dla Drogi Mlecznej:
26
Krzywe rotacji galaktyk spiralnych: Droga Mleczna (Gaia project)
27
Krzywe rotacji galaktyk spiralnych W przypadku większości galaktyk spiralnych prędkości radialne gwiazd pozostają stałe albo rosną z odległością od centrum Efekt: oszacowana z tw. o wiriale masa galaktyki jest o wiele większa niż masa świecącej materii widocznej w galaktykach
28
Krzywe rotacji galaktyk spiralnych: stosunek masa/światło Najwygodniej jest opisywać ten efekt poprzez stosunek masy mierzonej dynamicznie do masy świecącej: stosunek masa/światło (mass to light ratio, M/L mierzony w M_sun/L_sun) Dla większości galaktyk spiralnych w częściach centralnych pomiar w filtrze B -> M/L ~1 do 10. W okolicach Słońca M/L ~3. W częściach zewnętrznych galaktyk spiralnych M/L ~ 10-20
29
Stosunek masa/światło dla roznych typow galaktyk
30
Krzywe rotacji różnych systemów: stosunek masa/światło a model kosmologiczny (masa gestosc Wszechswiata)
31
Dyspersja prędkości galaktyk eliptycznych Ocena prędkości gwiazd w galaktyce eliptycznej: Poszerzenie dopplerowskie linii absorpcyjnych galaktyk => dyspersja prędkości gwiazd wzdłuż linii widzenia
32
Dyspersja prędkości galaktyk eliptycznych = 3 Typowe v~setki km/s (znacznie większe niż w spiralnych) Problem: czy rozkład prędkości gwiazd z galaktykach eliptycznych jest izotropowy? M/L ~10-20, do kilkuset (masa rośnie z R, podobnie jak w spiralnych)
33
NGC 1399
34
Własności galaktyk Galaktyki eliptyczne: związki pomiędzy Jasnością Wielkością (r_e) Dyspersją prędkości w centrum jasnością powierzchniową metalicznością Cel: poszukiwanie zwiazkow miedzy roznymi wlasnosciami -> kalibracja odleglosci; wychwycenie relacji niezaleznych od odleglosci
35
Własności galaktyk: krzywe jasności galaktyk eliptycznych: zaleznosc Faber-Jackson Jasność vs dyspersja prędkości w centrum Z twierdzenia o wiriale (jeśli założymy stałą jasność powierzchniową B): 2*3/2 M sigma^2 = G M^2/R L = 4 Pi R^2 B L ~ sigma^4 W praktyce B nie jest stałe i potęga zazwyczaj zawiera się między 3 a 5
36
Własności galaktyk: krzywe jasności galaktyk eliptycznych: Faber-Jackson Dyspersja prędkości -> jasność absolutna -> odległość W praktyce: duży rozrzut (ok 2 magnitudo)
37
Własności galaktyk: krzywe jasności galaktyk eliptycznych: fundamental plane (płaszczyzna fundamentalna) Rozrzut w relacji Faber-Jacksona -> może trzeba wprowadzić drugi parametr? Dressler 1987, Djorgowski i Davis 1987 i in.: przestrzeń parametrów Operujemy w przestrzeni trójwymiarowej: R – promień; I – jasność, sigma dyspersja prędkości, ew. dodatkowo μ – jasność powierzchniowa i in. parametry Empiryczne relacje -> płaszczyzna w przestrzeni 3D
38
Własności galaktyk eliptycznych: płaszczyzna fundamentalna Płaszczyzna zależności w 3D; zależności: Faber- Jacksona i jasność pow.-promień to rzuty tej płaszczyzny na 2D. Ich rozproszenie wynika z wygięcia płaszczyzny fundamentalnej w 3D
39
Płaszczyzna fundamentalna: przykład Promień vs jasność powierzchniowa Faber-Jackson (jasność vs dyspersja prędkości) Promień vs kombinacja jasności powierzchniowej i prędkości: płaszczyzna fundamentalna z boku Jasność powierzchniowa vs dyspersja prędkości: płaszczyzna fundamentalna widziana niemal od góry
40
Płaszczyzna fundamentalna Wprowadzano także liczne dodatkowe parametry, np. parametr Dresslera D_n = promień, wewnątrz którego całkowita jasność powierzchniowa przekracza daną wartość (20.75 mag_B/arcsec^2) Brak dobrej teoretycznej podstawy (galaktyki eliptyczne jako wynik zderzeń galaktyk dyskowych?) Dokładność wyznaczania odległości z tych parametrów ~25% (10% dla gromad)
41
Galaktyki eliptyczne jako układy trójosiowe Rotacja -> spłaszczenie elipsoid? Nie (za wolna) – możliwe tylko w przypadku galaktyk eliptycznych i zgrubień centralnych o małej jasności Galaktyki o M_B<-20.5 – rotacja za słaba, żeby wyjaśnić spłaszczenie -> albo dyspersja prędkości nie jest jednakowa w całej galaktyce, albo ruch nie jest symetryczny względem osi -> układy trójosiowe -> anizotropowy rozkład prędkości gwiazd
42
Jasności galaktyk: galaktyki spiralne: Relacja Tully'ego- Fishera Delta V = szerokość linii neutalnego H 21 cm po poprawce na nachylenie L_B ~ (ΔV)^a Oryginalnie a=2.5 (T-F) Potem dokładniejsze dane -> 3.5 Dla L_H (1.65 mikronów) a=4.3 Podczerwona relacja T-F okazała się bardzo dokładna => pomiar odległości Interpretacja dla eksponencjalnego dysku
43
Galaktyki: jasność a metaliczność Faber 1973: głębokość linii absorpcyjnej magnezu (indeks Mg_2) skorelowana z jasnością Ogólniej: korelacja między kolorem, jasnością, metalicznością Obecnie zamiast jasności używa się masy gwiazdowej -> lepsza korelacja
44
Funkcja jasności galaktyk \phi(L) dL = gęstość przestrzenna galaktyk o jasnościach z przedziału (L, dL) F-cja Szechtera L* - “charakterystyczna” jasność galaktyk w danej epoce
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.