Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Równowaga ciecz-ciecz w układzie dwuskładnikowym (1)

Podobne prezentacje


Prezentacja na temat: "Równowaga ciecz-ciecz w układzie dwuskładnikowym (1)"— Zapis prezentacji:

1 Równowaga ciecz-ciecz w układzie dwuskładnikowym (1)
Parametry: T, x1α,x1β,(p) α 1(T,p,x1) = 1(T,p,x1) 2(T,p,x1) = 2(T,p,x1) x1α β 10(T,p) + RTlna1(T,p,x1) = 10(T,p) + RTlna1(T,p,x1) 20(T,p) + RTlna2(T,p,x1) = 20(T,p) + RTlna2(T,p,x1) x1β p,T a1(T,p,x1) = a1(T,p,x1) a2(T,p,x1) = a2(T,p,x1)

2 Równowaga ciecz-ciecz w układzie dwuskładnikowym (2)
Czy równowaga pomiędzy ciekłymi fazami może zaistnieć dla roztworu doskonałego? α α x1α x1β β x1β β x1 x1α x1 = x1 x2 = x2 p,T Równowaga ciecz-ciecz (rozpad fazy ciekłej na dwie współistniejące fazy) możliwa jest tylko dla roztworów wykazujących duże dodatnie odchylenia od doskonałości.

3 Mieszanie na poziomie molekularnym (1)
Roztwór doskonały – mieszanie swobodne

4 Mieszanie na poziomie molekularnym (2)
w otoczeniu cząsteczki dominują cząsteczki dodatnie odchylenia od doskonałości Roztwór niedoskonały – mieszanie nieprzypadkowe w otoczeniu cząsteczki dominują cząsteczki

5 Mieszanie na poziomie molekularnym – rozpad na dwie fazy ciekłe (3)
faza α faza β

6 Równowaga ciecz-ciecz w układzie dwuskładnikowym – interpretacja w kategoriach stabilności
α x1β β x1α faza stabilna faza niestabilna

7 Równowaga ciecz-ciecz w układzie dwuskładnikowym – krzywe rozpuszczalności (1)
górna krytyczna temperatura mieszalności górny krytyczny punkt mieszalności T p = const Tg K T=T(xBβ, p = const) T=T(xBα, p = const) A B C α β cięciwa równowagi α + β reguła dźwigni: xBα A xB xB β B luka mieszalności

8 Równowaga ciecz-ciecz w układzie dwuskładnikowym – krzywe rozpuszczalności (1)
górna krytyczna temperatura mieszalności górny krytyczny punkt mieszalności T p = const Tg K T=T(xBβ, p = const) T=T(xBα, p = const) zanik zmętnienia pojawienie się zmętnienia α β α + β A xBα xB xB β B luka mieszalności

9 Równowaga ciecz-ciecz w układzie dwuskładnikowym – krzywe rozpuszczalności (2)
T p = const α + β dolna krytyczna temperatura mieszalności dolny krytyczny punkt mieszalności α β Td K xB A B

10 Równowaga ciecz-ciecz w układzie dwuskładnikowym – krzywe rozpuszczalności (3)
T T p = const p = const α2 Tg α2 + β2 β2 Td α α + β β Tg α1 + β1 Td α1 β1 K Td xB B A xB B A

11 Równowaga ciecz-ciecz-para (1)
heteroazeotrop c1 + c2 c2 c2+g c1 c1+g reguła faz: 2 (składniki) + 2 – 3 (fazy) = 1 ale dla T = const λ = 0 (!) układ inwariantny → nad luką mieszalności ciśnienie musi być stałe g x1c1 x1c2 A/R = 750 K; T = 300 K

12 Równowaga ciecz-ciecz-para (2)
heterozeotrop c2 c1 + c2 c1 c2 + g c1+g g x1c1 x1c2 A/R = 750 K; T = 300 K

13 Przypadek skrajny – bardzo duże odchylenia od doskonałości
c1 + c2 c2 c2+g c1 c1+g g x1c1 x1c2

14 Równowaga ciecz-ciecz-para (3) – przypadek graniczny – całkowity brak mieszalności w fazie ciekłej
T = const Równowaga ciecz-para faza α faza β py1 = p1o x11 py1 = p1o x11 py2 = p2o x22 py2 = p2ox22 g pBo Równowaga ciecz-ciecz x11 = x11 x22 = x22  1 pAo  1 Ac+ Bc py1 = p1o py2 = p2o p = p1o + p2o Ważny wniosek → prężność pary nasyconej nad mieszaniną cieczy praktycznie niemieszających się jest większa od prężności par czystych składników (a temperatura wrzenia jest niższa) → podstawa „destylacji z parą wodną” A xB B

15 Podział składnika pomiędzy dwie fazy ciekłe - ekstrakcja
3(T,p,x1, x3) = 3(T,p,x1, x3 ) a3(T,p,x1 ,x3) = a3(T,p,x1 ,x3 ) α [1,(2),3] x3β współczynnik podziału; w ogólnym przypadku zależny od stężenia β [(1),2,3] x3α p,T i współczynnik podziału nie zależy od stężenia Dla roztworów rozcieńczonych współczynniki aktywności w niesymetrycznym układzie odniesienia

16 Ograniczona rozpuszczalność w obu fazach
T p=const TtopB T p=const c TtopA TtopB c c + βs c + αs c + βs βs c + αs βs TtopA αs+βs αs αs+βs αs A B B xB A xB

17 Ograniczona rozpuszczalność w obu fazach
T p=const T p=const TtopB a a TtopB TtopA b c c+βs P c+βs c + αs βs c + αs βs αs E TtopA αs αs+βs αs+βs xB xB A B A B

18 Ograniczona rozpuszczalność w obu fazach + związki międzycząsteczkowe
p=const T c c + βs TtopB βs c + δs δs + βs c + αs c + γs γs δs TtopA αs γs + δs αs + γs xB A C D B

19 Diagram fazowy LiF + LiOH – eutektyk prosty

20 Diagram fazowy Cd + Zn

21 Diagram fazowy Pb + Au

22 Diagram fazowy Ag + Au

23 Diagram fazowy Au + Pt

24 Diagram fazowy Au + Cr

25 Diagram fazowy Al + Ti

26 Układ trójskładnikowy, dwufazowy (α,β)
Parametry: T, p, x1α, x2α, x1β, x2 β λ = n + 2 – f = – 2 = 3 Jeden stopień swobody [zależność typu y = f(x)] otrzymujemy dla ustalonych dwóch parametrów – zwykle T i p. Mamy wtedy: x1α = f (x2α,T, p = const) i x1β = f (x2β;T, p = const)

27 Ułamki molowe w układach trójskładnikowych
x2 0 ≤ x1 ≤ 1 0 ≤ x2 ≤ 1 0 ≤ x3= 1 – x1 – x2 ≤ 1 1 x1 + x2 = 1 x1 1

28 Równowagi fazowe w układach trójskładnikowych – trójkąt Gibbsa
xA = 0,20 xB = 0,10 xC = 0,70 0,10 0,20 0,70 B A

29 krzywa równowagi (stężenie roztworu nasyconego względem A)
B B C C A C T = T1 = const, p = const cięciwy równowagi krzywa równowagi (stężenie roztworu nasyconego względem A) 2 fazy – As + c 1 faza - c A B

30 T T2 A B B C C A C T = T2 = const, p = const A B

31 T T3 A B B C C A C T = T3 = const, p = const A B

32 T T4 A B B C C A C T = T4 = const, p = const A B
punkt eutektyczny A + C A B

33 tu są trzy fazy w równowadze → As + Cs + c
B B C C A C tu są trzy fazy w równowadze → As + Cs + c T = T5 = const, p = const 3 A B

34 T T6 A B B C C A C T = T6 = const, p = const 3 3 A B

35 T T7 A B B C C A C T = T7 = const, p = const 3 3 A B

36 T T8 A B B C C A C T = T8 = const, p = const W układach dwuskładnikowych faza ciekła nie występuje; istnieje wciąż jednak w układzie trójskładnikowym 3 3 3 A B

37 potrójny punkt eutektyczny (s1,s2,s3,c)
A B B C C A C T = T9= const, p = const potrójny punkt eutektyczny (s1,s2,s3,c) 3 3 E3 3 A B

38 Układy – dwie sole + woda
Problem: Liczba rzeczywistych składników dla substancji jonowych Np.: 1. NaF + KNO3 + H2O – 3 składniki (?) 2. Na+, F-, K+, NO3-, H2O - 5 składników (?) 1. NaF + KNO3 + H2O + (KF + NaNO3) – 5 składników (?) NaF + KNO3 + H2O + (KF + NaNO3) – 5 składników + równowaga: NaF + KNO3 = KF + NaNO3 → 4 niezależne składniki 2. Na+, F-, K+, NO3-, H2O - 5 składników + warunek elektroobojętności roztworu

39 Układy – dwie sole o wspólnym jonie + woda
1. NaF + KF + H2O - 3 składniki 2. Na+, F-, K+, H2O składniki + warunek elektroobojętności roztworu = 3 składniki niezależne Układ dwie sole o wspólnym jonie + woda jest układem trójskładnikowym

40 T T* NaCl NaCl H2O KCl KCl H2O KCl T = T* =const, p = const 3 NaCl H2O
odparowanie H2O 3 dodawanie NaCl NaCl H2O

41 Typowy diagram rozpuszczalności - dwie sole o wspólnym jonie + woda; w układzie występują hydraty
B B·2H2O A·B·H2O A·H2O A·B·H2O B·2H2O B·2H2O skład roztworu nasyconego względem 2 faz stałych 3 3 skład roztworu nasyconego względem 1 fazy stałej H2O A A·H2O T = const, p = const

42 Równowagi fazowe w układach trójskładnikowych – trójkąt Gibbsa
Fazy stałe CrCl2∙2H2O 2CrCl2∙NaCl∙H2O CrCl2∙NaCl NaCl CrCl2 2CrCl2∙NaCl∙H2O CrCl2∙NaCl CrCl2∙2H2O NaCl H2O

43 Równowagi fazowe w układach trójskładnikowych – trójkąt Gibbsa
Fazy stałe CrCl2∙2H2O 2CrCl2∙NaCl∙H2O CrCl2∙NaCl NaCl CrCl2 2CrCl2∙NaCl∙H2O CrCl2∙NaCl CrCl2∙2H2O NaCl H2O

44 Równowagi fazowe w układach trójskładnikowych – trójkąt Gibbsa
faza stała ułamki molowe w fazie ciekłej CrCl2 NaCl CrCl23H2O 0,12 0,13 0,10 CrCl23H2O + 2CrCl2NaClH2O 0,27 0,09 2CrCl2NaClH2O + CrCl2NaCl 0,23 0,21 CrCl2NaCl + NaCl 0,11 0,33 CrCl2 2CrCl2∙NaCl∙H2O CrCl2∙NaCl CrCl2∙2H2O NaCl H2O

45 To już ostatni wykład z termodynamiki technicznej i chemicznej!

46 Równowaga ciecz-ciecz w układach trójskładnikowych (1)
p = const C miareczkowanie (A + B) składnikiem C) krytyczny punkt mieszalności β α α + β A B cięciwa równowagi β α A B T = const, p = const

47 Równowaga ciecz-ciecz w układach trójskładnikowych (2)
B T = const, p = const

48 Równowaga ciecz-ciecz w układach trójskładnikowych (3)
β A B A B T = const, p = const

49 Równowaga osmotyczna 2 2 1 p p +  2o(T,p) + RTln(x22) =
możliwy tylko transport rozpuszczalnika (2) (o małych cząsteczkach) 2o(T,p) + RTln(x22) = 2(T,p) = 2o(T,p) 2(T,p) = 2o(T,p) + RTln(x22) < 2o(T,p) 2o(T,p) = 2o(T,p+) + RTln(x22) ciśnienie osmotyczne

50 Dla roztworów bardzo rozcieńczonych
Równowaga osmotyczna 1 2 2 p p +  2o(T, p) = 2o(T, p+) + RTln(x22) równanie van’t Hoffa Dla roztworów bardzo rozcieńczonych

51 roztwór hipertoniczny
Równowaga osmotyczna roztwór hipertoniczny roztwór hipotoniczny 2 2 1 3 ” < ’ p + ” p p +  p +  ‘

52 Wpływ równowagi osmotycznej na właściwości komórki (2)
roztwór hipotoniczny roztwór hipertoniczny

53 Ograniczenia termodynamiki klasycznej
jak ? stan A pA, TA, VA,n1A,n2A,…,nkA stan B pB, TB, VB,n1B,n2B,…,nkB

54 Zmienność parametrów w funkcji czasu i położenia
T0<T1 Q Q Q T1(t) T0(t) Q Q

55 Hipoteza lokalnej równowagi
X(11) X(12) X(13) X(14) X(15) X(16) X(17) X(1…) X(21) X(22) X(23) X(24) X(25) X(26) X(27) X(2…) X(31) X(32) X(33) X(34) X(35) X(36) X(37) X(3…) X(41) X(42) X(43) X(44) X(45) X(46) X(47) X(4…) X(51) X(52) X(53) X(54) X(55) X(56) X(57) X(5…) X(61) X(62) X(63) X(64) X(65) X(66) X(67) X(6…) X(71) X(72) X(73) X(74) X(75) X(76) X(77) X(7…) X(81) X(82) X(83) X(84) X(85) X(86) X(87) X(8…) X(…1) X(…2) X(…3) X(…4) X(…5) X(…6) X(…7) X(..,..)

56 Inne spojrzenie na II Zasadę
dS ≥ dQ/T dS = dQ/T + diS dS = deS + diS Sumaryczna zmiana entropii dla procesu deSukł + diSukł + deSot + diSot ≥ 0 deSukł = dQ/T deSot = -dQ/T diSukł + diSot ≥ 0

57 Lokalne sformułowanie II Zasady
diSukł ≥ 0 diSot ≥ 0 Produkcja entropii jest nieujemna źródło entropii

58 Lokalne sformułowanie II Zasady
σ(11)≥0 σ(12)≥0 σ(13)≥0 σ(14)≥0 σ(15)≥0 σ(1…)≥0 σ(21)≥0 σ(22)≥0 σ(23)≥0 σ(24)≥0 σ(25)≥0 σ(2…)≥0 σ(31)≥0 σ(32)≥0 σ(33)≥0 σ(34)≥0 σ(35)≥0 σ(3…)≥0 σ(41)≥0 σ(42)≥0 σ(43)≥0 σ(44)≥0 σ(45)≥0 σ(4…)≥0 σ(51)≥0 σ(52)≥0 σ(53)≥0 σ(54)≥0 σ(55)≥0 σ(5…)≥0 σ(61)≥0 σ(62)≥0 σ(63)≥0 σ(64)≥0 σ(65)≥0 σ(6…)≥0 σ(71)≥0 σ(72)≥0 σ(73)≥0 σ(74)≥0 σ(75)≥0 σ(7…)≥0 σ(81)≥0 σ(82)≥0 σ(83)≥0 σ(84)≥0 σ(85)≥0 σ(8…)≥0 σ(.,1)≥0 σ(..2)≥0 σ(..3)≥0 σ(..4)≥0 σ(..5)≥0 σ(..,..)≥0

59 Gradienty i przepływy w procesie nieodwracalnym
T0<T1 Q Q siły termodynamiczne przepływy Q T1(t) T0(t) Q Q

60 Linowe związki pomiędzy źródłem entropii a siłami termodynamicznymi
V = const

61 Równowaga w układzie wieloskładnikowym i wielofazowym
Parametry niezależne – odnoszące się do fazy α albo β: dU = - dU dV = - dV dni = - dni Parametry niezależne – odnoszące się do fazy α albo β: dU + dU = 0 dV + dV = 0 dni + dni = 0 α β U, V, N = const U = U + U V = V + V N = N + N

62 Linowe związki pomiędzy źródłem entropii a siłami termodynamicznymi
V = const

63 Linowe związki pomiędzy źródłem entropii a siłami termodynamicznymi
Proces Strumień przepływu Typ Siła termodynamiczna X skoniugowana z J Bodziec termodynamiczny Transport energii na sposób ciepła wektor Dyfuzja substancji Reakcja chemiczna skalar

64 Dla układu nieruchomego
Strumienie dyfuzyjne , Dla układu nieruchomego

65 Zależność strumieni od sił
, J zależy od siły skoniugowanej a może od innych sił też ...

66 Zależność przepływów od sił termodynamicznych - termodyfuzja
T1 > T2 T2 T1

67 Zależność przepływów od sił termodynamicznych - termodyfuzja
T1 > T2 Q T2 T1 Siła termodynamiczna (różnica temperatur) powoduje nie tylko przepływ energii (przepływ skoniugowany), ale również przepływ dyfuzyjny (przepływ sprzężony). Przepływ skoniugowany zwiększa entropię, ale pojawienie się gradientu stężeń (termodyfuzji), działa w kierunku przeciwnym. W ogólnym przypadku przepływ zależy od wszystkich sił termodynamicznych, nie tylko od siły skoniugowanej

68 Zależność przepływów od sił termodynamicznych – równania fenomenologiczne
rozwinięcie w szereg: źródło entropii: współczynniki fenomenologiczne

69 Współczynniki fenomenologiczne
L1n L21 L22 L23 L2n L31 L32 L33 L3n Ln1 Ln2 Ln3 Lnn

70 Współczynniki fenomenologiczne - uproszczenia
Ln1 Ln2 Ln3 Lnn 1. Zasada przemienności Onsagera Lij = Lji 2. Zerowanie się niektórych współczynników krzyżowych jako skutek zasady Curie

71 Współczynniki fenomenologiczne – konkretny przykład
Układ dwuskładnikowy: proces transportu ciepła, dyfuzji i reakcja chemiczna Lu1 = L1u Lur = L ru = 0 L1r = L r1 = 0

72 Stan stacjonarny Stałe siły termodynamiczne, przynajmniej jedna z nich niezerowa. stałe przepływy Entropia w procesie stacjonarnym źródło (produkcja) entropii osiąga minimum

73 Stan stacjonarny dla termodyfuzji
Układ dwuskładnikowy, stała różnica temperatur Xu = const siła termodynamiczna powodująca dyfuzję; zmienia się aż do osiągnięcia stanu stacjonarnego Źródło entropii znika przepływ dyfuzyjny Uogólnienie: W stanie stacjonarnym znikają przepływy nieskoniugowane z niezerową siłą termodynamiczną

74 Zależność przepływów od sił termodynamicznych - termodyfuzja
T1 > T2 Q T2 T1

75 Nieliniowa termodynamika procesów nierównowagowych
rozwinięcie w szereg: Tworzenie trwałych uporządkowań w układach dalekich od stanu równowagi (struktur dyssypatywnych)

76 Twórcy termodynamiki procesów nierównowagowych
Lars Onsager ( ), jeden z twórców termodynamiki procesów nierównowagowych. Nagroda Nobla 1968 Ilya Prigogine ( ), położył podstawy pod nieliniową termodynamikę procesów nierównowagowych. Nagroda Nobla 1977


Pobierz ppt "Równowaga ciecz-ciecz w układzie dwuskładnikowym (1)"

Podobne prezentacje


Reklamy Google