Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Struktury i algorytmy wspomagania decyzji
Materiał wykładowy 5: Zagadnienie wielocelowe liniowe I Automatyka i Robotyka - studia stacjonarne II stopnia Przedmiot: specjalnościowy Specjalność: Systemy sterowania i wspomagania decyzji Kazimierz Duzinkiewicz, dr hab. inż. Data rozpoczęcia prezentacji materiału:
2
Przypomnienie: Problemy podejmowania decyzji wielokryterialnych mogą być ogólnie zakwalifikowane do dwóch kategorii: problemy decyzji wieloatrybutowych (Multiple Attribute Decision Problem - MADP) problemy decyzji wielocelowych (Multiple Objective Decision Problem - MODP)
3
Problemy decyzji wieloatrybutowych
Cechą wyróżniającą problemy decyzji wieloatrybutowych MADP jest to, że istnieje ograniczona (i przeliczalnie mała) liczba ustalonych wcześniej opcji decyzyjnych. Każda opcja posiada określony, związany z nią, poziom osiągnięcia uznanych za istotne przez decydenta atrybutów/cech (które niekoniecznie muszą być kwantyfikowalne) i na których podstawie podejmowana jest decyzja
4
Problemy decyzji wielocelowych
W przypadku problemów decyzji wielocelowych MODP nie określana jest wcześniej liczba opcji z wartościami właściwych dla problemu atrybutów. Zamiast tego problemy te posiadają: (1) zbiór kwantyfikowalnych celów na podstawie których podejmowana jest decyzja; (2) zbiór dobrze określonych ograniczeń na wartości różnorakich atrybutów (zmiennych decyzyjnych) możliwych opcji
5
Cecha MADP MODP Problem Porównanie: Ocena oparta o Atrybuty Cele Cel
Nie wyrażany wprost Wyraźnie określony Atrybut Ograniczenie Nie występują (włączone w atrybuty) Występują Opcja Skończona liczba, dyskretne (wcześniej określone) Nieskończona liczba, (pojawiają się w trakcie procesu decyzyjnego)
6
Zagadnienie wieloatrybutowe – przykład
(Problem wyboru samolotów myśliwskich) Pewne państwo zdecydowało się zakupić flotę odrzutowych myśliwców w USA. Urzędnicy Pentagonu przedstawili informację o właściwościach czterech modeli, które mogą być sprzedane do tego kraju. Zespół analityków Sił Powietrznych zainteresowanego kraju zgodził się, że należy rozważać sześć charakterystyk (atrybutów). Są to: maksymalna prędkość (A1), zasięg latania (A2), maksymalny ładunek użyteczny (A3), koszt zakupu (A4), niezawodność (A5), manewrowalność (A6). Wartości tych atrybutów zostały przedstawione w tablicy Myśliwiec Atrybut A1 A2 A3 A4 A5 A6 M1 2.0 1500 20000 5.5 średnia b. wysoka M2 2.5 2700 18000 6.5 niska M3 1.8 2000 21000 4.5 wysoka M4 2.2 1800 5.0 Który z samolotów powinien wybrać zainteresowany kraj, jeżeli chciałby mieć samolot jak najszybszy, o jak największym zasięgu, jak największej ładowności, jak najtańszy, jak najbardziej niezawodny i jak najwyższych zdolnościach manewrowych?
7
Zagadnienie wielocelowe – przykład
Firma produkuje dwa produkty. Kierownictwo zdecydowało, że pragnie znaleźć plan produkcji, który będzie: maksymalizować całkowite zyski, maksymalizować spodziewaną liczbę „opanowanych” części rynku, spełnić ograniczenia procesowe (tj. dostępność surowca), uniknąć nasycenia rynku (tj. być w stanie sprzedać wszystkie wyprodukowane wyroby Każda jednostka produktu 1 przynosi zysk w wysokości 3 jednostek pieniężnych, a drugiego 1 jednostkę. Ustalono, że każda sprzedana jednostka produktu 1 spowoduje zdobycie 2 jednostek udziału na rynku, a drugiego produktu 3 jednostek udziału. Ponadto wiadomo, że jednostka produktu 1 potrzebuje 2 jednostki surowca do wyprodukowania, a jednostka produktu 2 tylko 1 jednostkę oraz, że dostępnych jest w rozważanym przedziale czasu tylko 50 jednostek surowca. W końcu ekspertyza rynku wskazuje, że nie więcej niż 20 jednostek produktu 1 i nie więcej niż 30 jednostek produktu 2 powinno być produkowane w rozważanym przedziale czasu
8
Wielocelowe programowanie liniowe
Fakt: Większość literatury i podręczników z zakresu programowania liniowego ogranicza się do ,,tradycyjnego”, to znaczy z pojedynczą funkcją celu, modelu liniowego Powód: Z punktu widzenia teorii optymalizacji bardziej dogodna matematycznie sytuacja - można bez ograniczeń mówić o poszukiwaniu rozwiązań optymalnych, wykorzystać ogólne pojęcia optymalności, itp. Spróbujemy: Poszerzyć tą perspektywę, rozważając zagadnienia liniowe obejmujące: * wiele przeciwstawnych celów, których osiąganie podlega, * zarówno ,,twardym” jak i ,,miękkim” ograniczeniom
9
Najczęstsza droga postępowania w optymalizacji wielocelowej:
* wprowadzenie pojęcia optymalności wielocelowej np. w sensie Pareto (Pareto optymalność) * wybór kompromisowej lub zadowalającej decyzji spośród decyzji optymalnych w wybranym sensie np.Pareto optymalnych
10
Elementy spojrzenia na zagadnienia decyzyjne uwypuklane w tej części wykładu
* wielość funkcji celu stosowanych w ocenie opcji decyzyjnych Jeden cel: ocena skalarów; Dwa cele: ocena wektorów Ogólnie: przenosimy się z sytuacji decyzyjnej w której istnieje jedna ,,poprawna” odpowiedź do sytuacji w której ,,poprawna” odpowiedź jest sprawą systemu uznawanych preferencji decydenta
11
* rozróżnianie twardych i miękkich ograniczeń (zadań)
W tradycyjnym modelu programowania liniowego, każde i wszystkie ograniczenia są traktowane jako całkowicie twarde - rozwiązanie nie spełniające któregokolwiek i wszystkich jest nazywane niedopuszczalnym W problemach rzeczywistego świata pojęcie doskonale twardych ograniczeń nie zawsze jest podtrzymywane Przykład: ograniczenie na zasoby surowcowe ma postać: Program produkcji: - matematycznie dopuszczalny (LS = 99) Program produkcji: - matematycznie niedopuszczalny (LS = 108);
12
W rzeczywistych problemach jesteśmy często w stanie tolerować pewien poziom ,,niespełnienia” określonego ograniczenia Miękkie ograniczenia (zadania) są to takie, które chcielibyśmy spełnić, lecz dla których będziemy w stanie akceptować pewien procent ,,niespełnienia” Twarde ograniczenia (zadania) są to takie, w których jakikolwiek stopień ,,niespełnienia” powinien być bezwzględnie nietolerowalny
13
Wielość funkcji celu Nie będą nas interesowały przypadki, kiedy możliwe jest znalezienie całkowicie optymalnego rozwiązania Np. jeżeli dla przykładowego zagadnienia
14
Wielość funkcji celu Rozwiązanie całkowicie optymalne Mówi się, że jest rozwiązaniem całkowicie optymalnym, wtedy i tylko wtedy, jeżeli istnieje takie, że
15
Wielość funkcji celu Weźmy przykład – dwucelowe zagadnienie programowania liniowego
16
Przedstawienie w przestrzeni opcji decyzyjnych (w przestrzeni decyzji)
17
Transformacja
18
Przedstawienie w przestrzeni kryteriów (w przestrzeni celów)
19
Ogólne sformułowanie wielocelowego zagadnienia programowania liniowego; k - fukncji celu, m - ograniczeń gdzie
20
Optymalizacja z jedną funkcją celu (jednocelowa)
Funkcja celu z odwzorowuje punkty przestrzeni decyzyjnej w R W R istnieje naturalny kanoniczny porządek Konsekwencja: Zdefiniowanie optymalnego rozwiązania np. minimalizacji jest proste
21
Optymalizacja z wieloma funkcjami celu (wielocelowa)
Funkcja celu z=[z1, z2, , zQ] odwzorowuje punkty przestrzeni decyzyjnej w RQ, Q>1 Problem: W RQ nie istnieje naturalny kanoniczny porządek Konsekwencja: Istnieją różne pojęcia optymalności, które zależą od wybranego w RQ porządku
22
Optymalizacja z wieloma funkcjami celu (wielocelowa)
Wyboru porządku należy dokonać – np. zależnie od problemu decyzyjnego Jeżeli można podać ranking funkcji celu – np. z1 jest ważniejsza niż z2 , wybrany może zostać porządek leksykograficzny Jeżeli interesują nas rozwiązania dla których poprawienie wartości jednej funkcji np. z1 nie może się odbyć bez pogorszenia co najmniej jednej z pozostałych, wybrany może zostać porządek Pareto
23
Optymalizacja z wieloma funkcjami celu (wielocelowa)
Ilustracja nierówności Pareto Stożki nierówności Pareto
24
Rozwiązanie optymalne w sensie Pareto (rozwiązanie Pareto optymalne)
Rozwiązanie jest nazywane Pareto optymalnym (minimalizacja), jeżeli nie istnieje Korzystając z określenia porządku Pareto, można to też sformułować: Rozwiązanie jest nazywane Pareto optymalnym, wtedy i tylko wtedy, jeżeli nie istnieje inny takie, że i
25
Stosowane określenia Jeżeli jest rozwiązaniem Pareto optymalnym, to o jest nazywany punktem efektywnym Jeżeli oraz i mówimy, że dominuje nad oraz, że dominuje nad
26
Graficzne wyznaczenie zbioru Pareto dla rozważanego przykładu
a) w przestrzeni decyzji
27
b) w przestrzeni celów
28
Wykorzystanie stożków Pareto (przypadek minimalizacji)
Lepsze Gorsze Nieporównywalne
29
Słabe rozwiązanie Pareto optymalne)
Rozwiązanie jest nazywane słabym rozwiązaniem Pareto optymalnym, wtedy i tylko wtedy, jeżeli nie istnieje inny takie, że
30
Alternatywy I. Wykorzystanie klasycznych metod optymalizacji jednocelowej operujących na pojedynczych punktach przestrzeni decyzyjnej – wyrażenie preferencji decydenta odbywa się przed optymalizacją – poszukiwanyjest jeden punkt zbioru Pareto II. Wykorzystanie metod optymalizacji operujących na populacjach punktów przestrzeni decyzyjnej (np.. algorytmy genetyczne) – poszukiwanie zbioru Pareto – wyrażenie preferencji po optymalizacji
31
Zadanie, które posłuży do ilustrowania różnych podejść optymalizacji wielocelowej
Firma produkuje dwa produkty. Zarząd wyraził życzenie, aby znaleźć program produkcji, który: maksymalizuje całkowity zysk, maksymalizuje spodziewaną ,,przechwytywaną” część rynku (udziały na rynku), spełnia ograniczenia procesu produkcji (tzn. dostępności surowców), nie doprowadza do nasycenia rynku (tzn. mamy możliwość sprzedania całej wytworzonej produkcji). Ponadto wiadomo: jedna jednostka produktu 1. zapewnia dochód w wysokości 3 jednostek pieniężnych (jp.), a jedna jednostka produktu jp.; oszacowano, że każda sprzedana jednostka produktu 1. powiększy rynek o dwie jednostki udziału na rynku, a jedna jednostka produktu 2. - o 3 jednostki; wytworzenie jednostki produktu 1. wymaga zużycia 2 jednostek surowca, a jednostki produktu jednostki; tylko 50 jednostek surowca jest dostępnych w rozważanym okresie czasu; badania rynku wskazują, że nie więcej niż 20 jednostek produktu pierwszego i nie więcej niż 30 jednostek produktu drugiego.
32
Analityczne sformułowanie zagadnienia:
Oznaczmy: - liczba wyprodukowanych jednostek produktu 1 - liczba wyprodukowanych jednostek produktu 2 Znaleźć wartości i takie, które: (czyli całkowity zysk w rozważanym okresie czasu) maksymalizują spełniając: (czyli przechwycone w rozważanym okresie czasu udziały w rynku) (ograniczenie dostępności surowca) (ograniczenie nasycenia rynku produktu 1.) (ograniczenie nasycenia rynku produktu 2.) (warunki nieujemności)
33
Graficzne rozwiązanie zagadnienia
Punkty wierzchołkowe:
34
– koniec materiału prezentowanego podczas wykładu
Dziękuję – koniec materiału prezentowanego podczas wykładu
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.