Analiza wariancji jednoczynnikowa.

Slides:



Advertisements
Podobne prezentacje
Regresja i korelacja materiały dydaktyczne.
Advertisements

Test zgodności c2.
Rangowy test zgodności rozkładów
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Wykład 9 Analiza wariancji (ANOVA)
Analiza współzależności zjawisk
Analiza wariancji jednoczynnikowa
Analiza wariancji Marcin Zajenkowski. Badania eksperymentalne ANOVA najczęściej do eksperymentów Porównanie wyników z 2 grup lub więcej Zmienna niezależna.
PODSUMOWANIE WIADOMOŚCI ZE STATYSTYKI
BUDOWA MODELU EKONOMETRYCZNEGO
Estymacja przedziałowa
Krzysztof Jurek Statystyka Spotkanie 4. Miary zmienności m ó wią na ile wyniki są rozproszone na konkretne jednostki, pokazują na ile wyniki odbiegają
Analiza wariancji Analiza wariancji (ANOVA) stanowi rozszerzenie testu t-Studenta w przypadku porównywanie większej liczby grup. Podział na grupy (czyli.
Podstawowe pojęcia prognozowania i symulacji na podstawie modeli ekonometrycznych Przewidywaniem nazywać będziemy wnioskowanie o zdarzeniach nieznanych.
Mgr Sebastian Mucha Schemat doświadczenia:
Wykład 11 Analiza wariancji (ANOVA)
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
Wykład 4. Rozkłady teoretyczne
Jednoczynnikowa analiza wariancji (ANOVA)
Rozkład t.
Hipotezy statystyczne
Wieloczynnikowa analiza wariancji
Analiza wariancji jednoczynnikowa
Analiza wariancji.
Testy nieparametryczne
Dlaczego obserwujemy??? istotny wpływ, istotną różnicę, istotną zależność.
Testowanie hipotez statystycznych
Hipotezy statystyczne
Testy nieparametryczne
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Testy nieparametryczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Modelowanie ekonometryczne
Hipotezy statystyczne
Zagadnienia regresji i korelacji
Kilka wybranych uzupelnień
Ekonometria stosowana
Planowanie badań i analiza wyników
Testy statystycznej istotności
Ekonometria stosowana
Regresja wieloraka.
Seminarium licencjackie Beata Kapuścińska
Testowanie hipotez statystycznych
ANALIZA ANOVA - KIEDY? Wiele przedsięwzięć badawczych zakłada porównanie pomiędzy średnimi z więcej niż dwóch populacji lub dwóch warunków eksperymentalnych.
Weryfikacja hipotez statystycznych
Estymatory punktowe i przedziałowe
Weryfikacja hipotez statystycznych dr hab. Mieczysław Kowerski
Testowanie hipotez Jacek Szanduła.
STATYSTYKA sposób na opisanie zjawisk masowych Mirosław Sadowski TRANSGRANICZNY UNIWERSYTET TRZECIEGO WIEKU W ZGORZELCU.
Korelacje dwóch zmiennych. Korelacje Kowariancja.
STATYSTYKA – kurs podstawowy wykład 9 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
Testy nieparametryczne – testy zgodności. Nieparametryczne testy istotności dzielimy na trzy zasadnicze grupy: testy zgodności, testy niezależności oraz.
STATYSTYKA – kurs podstawowy wykład 7 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Estymacja parametrów populacji. Estymacja polega na szacowaniu wartości parametrów rozkładu lub postaci samego rozkładu zmiennej losowej, na podstawie.
STATYSTYKA – kurs podstawowy wykład 6 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Weryfikacja hipotez statystycznych „Człowiek – najlepsza inwestycja”
Statystyka medyczna Piotr Kozłowski www: 1.
Estymacja parametryczna dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz.
Statystyka Wykłady dla II rok Geoinformacji rok akademicki 2012/2013
Testy nieparametryczne
Statystyka matematyczna
Statystyka matematyczna
Regresja wieloraka – służy do ilościowego ujęcia związków między wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą) Regresja.
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Analiza kanoniczna - stanowi uogólnienie liniowej regresji wielorakiej na dwa zbiory zmiennych tzn. dla zmiennych zależnych i niezależnych. Pozwala badać.
KONTRASTY Zastosowanie statystyki w bioinżynierii ćw 5.
Zapis prezentacji:

Analiza wariancji jednoczynnikowa

Ronalda Fisher (angielski biolog i genetyk) Istota teorii analizy wariancji opiera się na podziale zmienności głównej na pewne frakcje i na analizowaniu tych poszczególnych zmienności.

Zastosowanie Zmienna zależna – skala przedziałowa Liczba porównywanych grup > 2 Zmienna niezależna – skala nominalna lub porządkowa

Założenia analizy wariancji: Niezależność zmiennych objaśniających (czynników) Homogeniczność wariancji Normalność rozkładu

Podział zmienności zmienność ogólna zmienność międzygrupowa zmienność wewnątrzgrupowa

Rozkład F stosunek kwadratów odchyleń międzygrupowych do wewnątrzgrupowych kształtuje się według określonego rozkładu (rozkład F) lub inaczej stosunek zmienności międzygrupowej do wewnątrzgrupowej kształtuje się według określonego rozkładu (rozkład F)

Rozkład F Jeśli z populacji o rozkładzie normalnym wybieralibyśmy losowo po dwie próby i badalibyśmy wzajemne relacje ich wariancji (iloraz), to ten stosunek miałby rozkład zgodny z rozkładem F.

Rozkład F

Hipoteza zerowa H0: Wszystkie średnie są równe.

Hipoteza alternatywna H1: Istnieje co najmniej jedna para średnich, które różnią się ze sobą. H1: 12 lub 1  3 lub 2  3 itd....

Kolejność obliczeń

Liczba stopni swobody Ogólna: N - 1(N – liczebność populacji) Międzygrupowa: k - 1 (k – liczba grup doświadczalnych) Wewnątrzgrupowa: N - k

Sumy kwadratów odchyleń Zmienność ogólna Zmienność międzygrupowa Zmienność wewnątrzgrupowa: Sw = So - Sm

Średnie kwadraty odchyleń Zmienność międzygrupowa: Sm2 = Sm / (k - 1) Zmienność wewnątrzgrupowa: Sw2 = Sw / (N - k)

Statystyka F wartość krytyczna

Interpretacja Obliczoną wartość statystyki F (tzw. F empiryczne - Femp.) odnosimy do wartości krytycznej z rozkładu F dla założonego poziomu istotności () i określonej liczby stopni swobody (1=k-1 oraz 2=N-k) (F tabelaryczne - Ftab.). Jeżeli Femp.  Ftab. – to mamy podstawę do odrzucenie hipotezy zerowej i stwierdzenia, iż istnieje co najmniej jedna para średnich, które różnią się ze sobą. Zatem czynnik doświadczalny wpływa statystycznie na cechę. W przeciwnym przypadku, nie mamy podstaw do odrzucenia H0.