LASERY.

Slides:



Advertisements
Podobne prezentacje
Wojciech Gawlik - Optyka, 2006/07. wykład 14 1/22 Podsumowanie W13 Źródła światła Promieniowanie przyspieszanych ładunków Promieniowanie synchrotronowe.
Advertisements

Wojciech Gawlik - Optyka, 2006/07. wykład 14 1/22 Podsumowanie W13 Źródła światła Promieniowanie przyspieszanych ładunków Promieniowanie synchrotronowe.
Light Amplification by Stimulated Emission of Radiation (LASER)
Lasery półprzewodnikowe kontra lasery argonowe.
OPTOELEKTRONIKA Temat:
OPTOELEKTRONIKA Temat:
ŚWIATŁO.
Lasery przemysłowe Laser Nd:YAG – budowa i zastosowanie
Optoelektronika i fizyka materiałowa1 Lasery telekomunikacyjne (InP) Lasery przestrajalne dzielimy na: -lasery przestrajalne w wąskim zakresie długości.
Radosław Strzałka Materiały i przyrządy półprzewodnikowe
WYKŁAD 10 ATOMY JAKO ŹRÓDŁA ŚWIATŁA
Wykład V Laser.
Wykład XIII Laser.
Lasery Marta Zdżalik.
, Prawo Gaussa …i magnetycznego dla pola elektrycznego…
Podstawy fotoniki rezonatory laserowe zastosowanie laserów
PREZENTACJA „DZIURA OZONOWA”.
Fotony.
Zjawisko fotoelektryczne
1 WYKŁAD WŁASNOŚCI PRZEJŚĆ WYMUSZONYCH 1.Prawdopodobieństwo przejść wymuszonych jest różne od zera tylko dla zewnętrznego pola o częstości rezonansowej,
Lasery - i ich zastosowania
Temat 3: Rodzaje oraz charakterystyka mediów transmisyjnych.
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gastronomicznych
mgr Aldona Kwaśniewska
KOSMICZNE ROZBŁYSKI Z ODLEGŁYCH GALAKTYK
Dane INFORMACYJNE Nazwa szkoły:
ULTRAFIOLET.
Promieniowanie Cieplne
Dyfrakcja Side or secondary maxima Light Central maximum
CZYNNIKI SZKODLIWE I UCIĄŻLIWE W ŚRODOWISKU PRACY
Materiały do LASEROTERAPII.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat: O promieniowaniu ciał.
W okół każdego przewodnika, przez który płynie prąd elektryczny, powstaje pole magnetyczne. Zmiana tego pola może spowodować przepływ prądu indukcyjnego,
Optyczne metody badań materiałów
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
Wojciech Gawlik, Metody Optyczne w Medycynie 2010/11 - wykł. 3 1/18 Lampy (termiczne)Lampy (termiczne) na ogół wymagają filtrów Źródła światła:
Opad atmosferyczny mający zazwyczaj postać kryształków lodu, które w powiększeniu mają kształt gwiazdy 6- ramiennej, łącząc się ze sobą tworzą płatki.
PROMIENIOWANIE CIAŁ.
Masery i lasery. Zasada działania i zastosowanie.
Promieniowanie Roentgen’a
Widzialny zakres fal elektromagnetycznych
Lasery i masery. Zasada działania i zastosowanie
Optyczne metody badań materiałów – w.2
Zasada działania napędów dysków optycznych
Bezpieczeństwo pracy z laserami
Mroczna Przyszłość Ziemi
Efekt fotoelektryczny
Prezentacja Multimedialna.
Klaudia Rydygier kl. IcG. Składniki atmosfery Marsa: Dwutlenek węgla – 95,32% Azot – 2,7% Argon – 1,6% Inne gazy, w tym tlen – 0,38%
Budowa i sposób działania napędów optycznych Urządzenia techniki komputerowej.
LASER Light Amplification by Stymulated Emision of Radiation wzmocnienie światła przez wymuszoną emisję światła.
Zapis cyfrowy. Technika cyfrowa W technice cyfrowej sygnał przetwarzany jest z naturalnej postaci do reprezentacji numerycznej, czyli ciągu dyskretnych.
Promieniowanie Roentgena Alicja Augustyniak Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Rok I, II stopień.
Autor: Eryk Rębacz ZiIP gr.3. Pierwszy laser (rubinowy) zbudował i uruchomił 16 maja 1960 roku Theodore Maiman, ośrodkiem czynnym był kryształ korundu.
Efekt fotoelektryczny
Masery i lasery. Zasada działania i zastosowania.
Msery i lasery Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Wykonał: Piotr Ćwiek.
Promieniowanie jądrowe Data. Trochę historii… »8 listopada 1895 roku niemiecki naukowiec Wilhelm Röntgen rozpoczął obserwacje promieni katodowych podczas.
Promieniowanie rentgenowskie
prezentacja popularnonaukowa
Optyczne metody badań materiałów
Optyczne metody badań materiałów
Optyczne metody badań materiałów – w.2
Promieniowanie Słońca – naturalne (np. światło białe)
LASER Light Amplification by Stimulated Emission of Radiation (wzmocnienie światła za pomocą wymuszonej emisji promieniowania) – urządzenie elektroniki.
E = Eelektronowa + Ewibracyjna + Erotacyjna + Ejądrowa + Etranslacyjna
Optyczne metody badań materiałów
Odbicie od metali duża koncentracja swobodnych elektronów
Light Amplification by Stimulated Emission of Radiation.
Zapis prezentacji:

LASERY

CZYM JEST LASER?

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ?

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ? JAK DZIAŁA?

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ? JAK DZIAŁA? RODZAJE LASERÓW

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ? JAK DZIAŁA? RODZAJE LASERÓW ZASTOSOWANIE LASERÓW

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ? JAK DZIAŁA? RODZAJE LASERÓW ZASTOSOWANIE LASERÓW BEZPIECZEŃSTWO PRACY Z LASERAMI

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ? JAK DZIAŁA? RODZAJE LASERÓW ZASTOSOWANIE LASERÓW BEZPIECZEŃSTWO PRACY Z LASERAMI HOLOGRAMY

CZYM JEST LASER? SKĄD SIĘ WZIĄŁ? JAK DZIAŁA? RODZAJE LASERÓW ZASTOSOWANIE LASERÓW BEZPIECZEŃSTWO PRACY Z LASERAMI HOLOGRAMY CIEKAWOSTKI ZE ŚWIATA LASERÓW

CZYM JEST LASER?

Laser jest urządzeniem wytwarzającym światło, które różni się od światła zwyczajnego. Czym różni się światło lasera od zwykłego? Zwyczajne światło, które widzimy jako białe, w rzeczywistości jest mieszaniną wielu różnokolorowych promieni o różnych długościach fali. Natomiast światło lasera jest monochromatyczne (jednobarwne), czyli składa się wyłącznie z promieni o jednakowej długości fali i jest widoczne w postaci wiązki o bardzo czystym kolorze.

wzmacnianie światła przez wymuszoną emisję promieniowania L Light A Amplification by S Stimulated E Emission of R Radiation wzmacnianie światła przez wymuszoną emisję promieniowania

Podstawowe cechy światła laserowego to: minimalna rozbieżność wiązki, gdyż światło laserowe jest spójne i koherentne; monochromatyczność; w laserze rubinowym szerokość linii widmowej nie przekracza na ogół 0,01 mm; równoległość - w laserach stałych rozbieżność wiązki nie przekracza zwykle 10 miliradianów, natomiast w laserach CO2 utrzymuje się poniżej 2-5 miliradianów; duża energia promieniowania.

SKĄD SIĘ WZIĄŁ?

Wiązka światła laserowego zabłysła po raz pierwszy w roku 1960, ale pierwsze kroki na drodze do stworzenia lasera poczyniono dużo wcześniej. Wszystko zaczęło się w roku 1917, kiedy słynny uczony Albert Einstein stwierdził, że jest możliwe pobudzanie najmniejszych cząsteczek materii - atomów, do emisji światła. Okazało się to wtedy bardzo trudne do sprawdzenia. Musiało minąć wiele lat, zanim udało się tego dokonać. Na początku 1997 r., uczeni amerykańscy ze słynnego Massachusetts Institute of Technology poinformowali o skonstruowaniu lasera, którego wiązka składa się z atomów materii, a nie z fotonów uporządkowanych zgodnie z falami materii.

Przełom nadszedł, gdy trzech amerykańskich naukowców, Charles Townes, James Gordon i Herbert Zeiger, odkryło sposób pobudzania atomów do emisji nie światła, ale mikrofal. W roku 1954 skonstruowali pierwszy maser (Microwave Amplification by Stimulated Emission of Radiation - wzmacnianie mikrofal przez wymuszoną emisję promieniowania) - urządzenie emitujące silną, dającą się sterować wiązkę mikrofal. Osiągniecie to zachęciło wielu naukowców do prób budowy laserów, czyli maserów emitujących światło zamiast mikrofal. Pierwszym, któremu się to udało, był amerykański naukowiec Theodore Maiman. 15 maja 1960 roku pobudził do emisji pierwszej wiązki światła laserowego pręt z rubinu, umieszczony wewnątrz potężnej lampy błyskowej. Wraz z tym jaskrawym impulsem głęboko czerwonej barwy rozpoczęła się era laserów. 

JAK DZIAŁA LASER?

RODZAJE LASERÓW

W zależności od ośrodka czynnego rozróżniamy lasery gazowe atomowe, np. He-Ne lasery gazowe molekularne, np. N2-CO2-He lasery gazowe jonowe lasery krystaliczne czyli na ciele stałym, np. rubinowy, YAG lasery szklane, np. neodymowy lasery półprzewodnikowe, np. GaAs-AlGaAs lasery barwnikowe, np. z roztworem rodaminy lasery chemiczne, np. wykorzystanie reakcji syntezy wzbudzonego HF lub DF do pobudzenia ośrodka czynnego.

Rodzaj pracy, długość impulsu Zastosowanie Typ lasera l[nm] Rodzaj pracy, długość impulsu Zastosowanie rubinowy 694,3 impulsowa ,30÷ 3·105 technologiczne, spawanie, topienie, wiercenie, dentystka, biologia neodymowy 1060 ciągła lub impulsowa (15ns) telekomunikacja, laserowe układy śledzące, kontrolowane reakcje jądrowe półprzewodnikowy GaInAsP, GaAs, AlGaAs 800÷1600 ciągła lub impulsowa (102ns) telekomunikacja barwnikowy przestrajany 200÷800 ciągła lub impulsowa (2÷2·103ns) pompowany laserem N2 lub Ar spektroskopia, rozdzielanie izotopów, biologia He-Ne 632,8 ciągła interferometria, metrologia, holografia, geodezja argonowy jonowy 488÷514,5 ciągła lub impulsowa (103ns) chirurgia, spektroskopia azotowy 337,1 impulsowa (10ns) spektroskopia, reakcje fotochemiczne CO2 10600 ciągła lub impulsowa (102÷5·104ns) laserowe układy śledzące, chirurgia, dentystyka, obróbka materiałów, cięcie i spawanie metali, kontrolowane reakcje jądrowe, rozdzielanie izotopów

ZASTOSOWANIE LASERÓW

Zastosowanie laserów w przemyśle cięcie spawanie znakowanie drążenie otworów obróbka powierzchniowa hartowanie stapianie warstwy powierzchniowej wzbogacanie warstwy przypowierzchniowej w składniki stopowe nakładanie warstwy przypowierzchniowej (natapianie)

Laserowa obróbka materiałów :

Pomiary odległości Geodeci używają przyrządów zwanych dalmierzami laserowymi do bardzo dokładnych pomiarów odległości - od kilku metrów do około 3 km. Dalmierz laserowy rejestruje czas upływający pomiędzy wysłaniem impulsu świetlnego a odebraniem odbitego od obiektu echo tego impulsu. Wiadomo, że szybkość światła jest stała i wynosi około 300000 km/s. Dystans do obiektu, obliczony z pomnożenia czasu przez szybkość, pojawi się na wyświetlaczu dalmierza.

Do określenia poziomu skażenie atmosfery

Dźwięk i dane na CD fragment płyty CD nadruk warstwa z aluminium warstwa tworzywa sztucznego land pit obiektyw strumień światła odbity od landu Dioda fotooptyczna Laser diodowy głowica odczytująca

Światłowody W miarę jak coraz więcej ludzi używa Internetu, telefonu i faksu, rośnie zapotrzebowanie na łącza telekomunikacyjne. I w tej dziedzinie lasery są pomocne. Kable światłowodowe, przewodzące sygnały w formie impulsów świetlnych o różnej intensywności, przenoszą wielokrotnie więcej informacji, niż tradycyjne miedziane kable telefoniczne. W światłowodowych sieciach telekomunikacyjnych pojedyncze włókno może równocześnie przesyłać tysiące rozmów telefonicznych.

Cele wojskowe Żołnierz mierzy celownikiem laserowym. Laser kieruje pociskiem rakietowym prosto do celu. Bomby precyzyjnie niszczą cele naziemne. Bomby kierowane laserem zostały zwolnione przez samolot bojowy Jaguar lotnictwa francuskiego.

Biologia i chemia Mikroskopowy widok nicieni glebowych oświetlonych światłem lasera.

W medycynie wysokoenergetyczne niskoenergetyczne W medycynie stosuje się lasery: wysokoenergetyczne niskoenergetyczne

Skalpel laserowy

BEZPIECZEŃSTWO PRACY Z LASERAMI

Podczas pracy z laserami występują następujące zagrożenia: niebezpieczeństwo uszkodzenia oka, niebezpieczeństwo uszkodzenia skóry, niebezpieczeństwo porażenia prądem, niebezpieczeństwa związane z produktami obróbki czyli np. pyły i gazy.

zakres długości fal oko skóra Ultrafiolet C 100 - 280 nm Ultrafiolet B 280 - 315 nm zapalne uszkodzenie rogówki rumień (oparzenie słoneczne) przyspieszone starzenie skóry zwiększona pigmentacja Ultrafiolet A 315 - 400 nm Widzialny 400 - 780 nm katarakta fotochemiczna fotochemiczne i termiczne uszkodzenia siatkówki ciemnienie pigmentu reakcje fotoczułe oparzenia skóry Podczerwień A 780 - 1400 nm katarakta oparzenie siatkówki oparzenia skóry Podczerwień B 1400 - 3000 nm katarakta przymglenie rogówki oparzenie rogówki Podczerwień C 3000 nm - 1 mm wyłącznie oparzenie rogówki

Oznaczenia pozwalające zidentyfikować klasę urządzeń laserowych Tekst polski Tekst angielski URZĄDZENIE LASEROWE KLASY 1 CLAS 1 LASER PRODUCT PROMIENIOWANIE LASEROWENIE SPOGLĄDAĆ BEZPOŚREDNIO W WIĄZKĘ PRZEZ PRZYRZĄDY OPTYCZNEURZĄDZENIE LASEROWE KLASY 1M LASER RADIATION DO NOT VIEV DIRECTLY WITH OPTICAL INSTRUMENT CLAS 1M LASER PRODUCT PROMIENIOWANIE LASEROWENIE WPATRYWAĆ SIĘ W WIĄZKĘURZĄDZENIE LASEROWE KLASY 2 LASER RADIATION DO NOT STARE INTO BEAM CLASS 2 LASER PRODUCT PROMIENIOWANIE LASEROWENIE WPATRYWAĆ SIĘ W WIĄZKĘ LUB NIE SPOGLĄDAĆ BEZPOŚREDNIO W WIĄZKĘ PRZEZ PRZYRZĄDY OPTYCZNEURZĄDZENIE LASEROWE KLASY 2M LASER RADIATION DO NOT STARE INTO THE BEAM OR VIEV DIRECTLY WITH OPTICAL INSTRUMENTS CLAS 2M LASER PRODUCT PROMIENIOWANIE LASEROWECHRONIĆ OCZYURZĄDZENIE LASEROWE KLASY 3R LASER RADIATION A VOID DIRECT EYE EXPOSURECLAS 3R LASER PRODUCT PROMIENIOWANIE LASEROWEUNIKAĆ WIĄZKI LASEROWEJURZĄDZENIE LASEROWE KLASY 3R LASER RADIATION A VOID EXPOSURE TO BEAMCLAS 3R LASER PRODUCT PROMIENIOWANIE LASEROWEUNIKAĆ WIĄZKI LASEROWEJURZĄDZENIE LASEROWE KLASY 3B LASER RADIATION A VOID EXPOSURE TO BEAMCLAS 3B LASER PRODUCT PROMIENIOWANIE LASEROWECHRONIĆ OCZY I SKÓRĘ PRZED PROMIENIOWANIEM BEZPOŚREDNIM LUB ROZPROSZONYMURZĄDZENIE LASEROWE KLASY 4 LASER RADIATION A VOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION CLAS 4 LASER PRODUCT

HOLOGRAMY

W roku 1948 amerykański naukowiec pochodzenia węgierskiego, Dennis Gabor, wpadł na pomysł trójwymiarowej fotografii, czyli hologramu przedmiotu, otrzymywanego przez rozszczepienie wiązki spójnego światła. Wówczas nie znano sposobu wytwarzania takiego światła, ale z chwilą pojawienia się laserów w roku 1960 holografia stała się możliwa.

Soczewka rozpraszająca wiązkę objekt lustro Film fotograficzny Soczewka rozpraszająca wiązkę lustro Lustro rozszcze- piające wiązkę (lustro półprze- nikliwe) Wiązka światła lasera laser

CIEKAWOSTKI ZE ŚWIATA LASERÓW

Laser rentgenowski Badacze z University of Colorado ogłosili, że udało im się stworzyć laser świecący na granicy ultrafioletu i światła rentgenowskiego. Długość fali emitowanego przezeń promieniowania wynosi zaledwie 5 nanometrów - około stukrotnie mniej niż długość fali światła widzialnego i dwukrotnie mniej od dotychczasowego rekordu. Zbudowanie tak wysokoenergetycznego lasera było możliwe dzięki wykorzystaniu własności argonu - jednego z gazów szlachetnych. Atomy argonu oświetlano promieniowaniem widzialnym, które usuwało jego najdalsze od jądra elektrony. Wiążące się ponownie z jonami argonu elektrony emitowały laserowe błyski miękkiego promieniowania rentgenowskiego. Do produkcji promieniowania o jeszcze wyższej energii można by teoretycznie wykorzystać atomy helu, nie rozwiązano jednak jeszcze trudności technicznych, wiążących się ze skłonieniem ich do emitowania światła o dużym natężeniu. Na razie trwają więc prace nad argonem. Nowowytworzony laser z pewnością znajdzie wiele zastosowań. Badacze proponują wykorzystanie go do obrazowania nanoobiektów, w szczególności w biologii. Autor: Weronika Śliwa "Ekspres Naukowy" 28.01.2004

Niebieski laser Badania nad niebieskim laserem stanowią część tzw. niebieskiej optoelektroniki, objętej realizowanym od kilku lat w Polsce Strategicznym Programem Rządowym. Pierwszy niebieski laser powstał w 1996 r. w Japonii (prof. Shuji Nakamura), ale cechowały go mała moc i krótki czas działania. Przyczyną były defekty struktury azotku galu, który jest ciałem czynnym w tym laserze. Azotek galu jest półprzewodnikiem wykorzystywanym komercyjnie do końca lat 90. w postaci diod świecących. Zastosowanie GaN w technice laserowej wymaga otrzymywania kryształów pozbawionych defektów. Udało się to Polakom w Centrum Badań Wysokociśnieniowych "Unipress". Polskie kryształy azotku galu mają postać przeźroczystych, sześciokątnych płatków o lustrzanej powierzchni wielkości 1 cm2 i grubości 0,1 mm. Uważa się (i jest to realne), że niebieski laser zrewolucjonizuje przemysł audio- video. Zastosowany w odtwarzaczach CD umożliwi zapisanie kilkakrotnie więcej dźwięku i obrazu. Aby to osiągnąć, należy dążyć do zwiększenia mocy lasera, obniżenia prądu niezbędnego do wzbudzenia akcji laserowej oraz zapewnienia powtarzalności właściwości wyrobu finalnego - by każdy laser świecił tak samo. Wówczas te lasery znajdą zastosowanie nie tylko w odtwarzaczach komputerowych, ale też do analizy zanieczyszczeń atmosfery, w komunikacji podwodnej oraz do budowy wyświetlaczy wielkiego formatu. Niebieskie lasery zezwalają na kilkakrotne zwiększenie ilości informacji na dyskach optycznych (DVD), zostaną wykorzystane w drukarkach laserowych ultrawysokiej rozdzielczości, pojawią się w wielu zastosowaniach wojskowych, ochronie środowiska, a także w diagnostyce medycznej. Szacuje się, że za 10 lat wartość produkcji polskiego przemysłu niebieskiej optoelektroniki osiągnie blisko 3 mld zł. (wykorzystano min. artykuły K. Lewandowskiego opublikowane w Biuletynie KBN w 9/2001 i 1 - 2/2002, "Forum Akademickim" 7 - 8/2002).

Amerykańskie wojsko stawia na broń laserową Nad poligonem White Sands w Nowym Meksyku dokonano pierwszego przechwycenia i zestrzelenia laserem pocisku lecącego z prędkością naddźwiękową. Naświetlenie trwało kilka sekund, po czym cel został rozerwany na części. Obserwatorzy, wśród których przeważali wysocy oficerowie amerykańskiej armii, byli bardzo zadowoleni. Mówi się nawet o tworzeniu „nowej historii”, bo odkąd przez siedmioma wiekami na wyposażeniu wojska znalazła się broń palna i artyleria taktyka obrony polegała na schodzeniu z linii ognia, ucieczce, ukrywaniu się przed nadlatującymi pociskami, budowaniu umocnień i bunkrów. Wkrótce wszystko to może się okazać niewystarczające. Laser będzie zdolny przepalić każdy pancerz i zniszczyć pocisk w trakcie lotu. Pierwsze udane zestrzelenie ma na koncie "Tactical High Energy Laser" (THEL) pierwsza broń z planowanego całego arsenału, który amerykańska armia chce mieć już niedługo na swoim wyposażeniu. Minister Obrony Donald Rumsfeld przyznał temu programowi najwyższy priorytet. Na zdięciu przedstawiam zdięcie The Mobile Tactical High Energy Laser (THEL):

Najpotężniejsze lasery świata Najpotężniejsze lasery świata są używane przede wszystkim do badania struktury atomów i reakcji rozszczepienia. Emitują one potężne impulsy energii w zakresie terawatów (bilionów watów) - impulsy te jednak są bardzo krótkie, krótsze od pikosekundy ( bilionowa część sekundy ). Najpotężniejszy jest laser brytyjski "VULCAN" ma moc rzędu 100 terawatów (TW), oczywiście mowa tu o bardzo krótkich impulsach rzędu pikosekund. Laser taki emituje wiązkę o długości 1054 nm jest to laser Nd:szkło. Laser ten został wpisany do Księgi Guinnessa. Więcej informacji o tym laserze można znaleźć pod adresem :http://www.clf.rl.ac.uk/Facilities/vulcan/. a oto "VULCAN" Największy laser w USA zdolny jest do wytworzenia impulsu o gestości mocy około 10 TW na cm2 Dla porównania w przemyśle stosuje się lasery o mocach do 45 kW.

Według planów NASA Marsjańskie Laboratorium Naukowe miało zostać wysłane na Czerwoną Planetę w grudniu 2009 jednak z powodu problemów z budżetem NASA przełoży prawdopodobnie misję MSL na rok 2011. MSL ma pozostać aktywny po wylądowaniu przez jeden Marsjański rok (687 dni). Waga pojazdu będzie wynosić około 3,000 kilogramów (6,600 funtów). Naukowcy wyposażą łazik między innymi w spektroskop laserowy, który badać będzie marsjańskie skały w taki oto sposób: z pewnej odległości (do 13 metrów) łazik wystrzeli w stronę skały promień lasera. Fragment skały, na którym skupi się promień, zostanie stopiony lub wyparuje. Potem rozgrzane cząstki będą stygły, emitując światło, na podstawie którego ustalić będzie można skład skały. Poniższy rysunek w sposób obrazowy przedstawia zasadę działania spektroskopu laserowego: Marsjańskie Laboratorium Naukowe Oto jak wyglądać będzie pojazd o nazwie Mars Science Laboratory (MSL) (Marsjańskie Laboratorium Naukowe) podczas pracy : Pełny tekst na stronie NASA.

Źródła: www.free.of.pl/l/lasery www.wikipedia.pl Leksykon szkolny Nauka i technika, wyd. OXFORD UNIVERSITY PRESS Encyklopedia multimedialna WIEM www.myzlab.qs.pl Wielka Encyklopedia A-Z