Materiały na tranzystory

Slides:



Advertisements
Podobne prezentacje
Z CZEGO ZBUDOWANA JEST ZIEMIA?
Advertisements

Tranzystory Tranzystory bipolarne Tranzystory unipolarne bipolarny
Cele wykładu Celem wykładu jest przedstawienie: konfiguracji połączeń,
KRZEM JEGO ZWIĄZKI I.
Tranzystor Trójkońcówkowy półprzewodnikowy element elektroniczny, posiadający zdolność wzmacniania sygnału elektrycznego. Nazwa tranzystor pochodzi z angielskiego.
Tranzystor polowy, tranzystor unipolarny, FET
ELEKTROSTATYKA II.
kontakt m-s, m-i-s, tranzystory polowe
WZMACNIACZE PARAMETRY.
Mateusz Wieczorkiewicz
Wykonał Artur Kacprzak kl. IVaE
Obwody elektryczne, zasada przepływu prądu elektrycznego
Podstawy teorii przewodnictwa
Węgiel jako pierwiastek chemiczny
Krzem Joanna Woderska II a.
Kiedy półprzewodniki stają się przewodnikami i izolatorami?
Alternatywne Źródła Energii
TRANZYSTOR BIPOLARNY.
, Prawo Gaussa …i magnetycznego dla pola elektrycznego…
Metale i stopy metali.
Materiały Półprzewodnikowe
Radiatory Wentylatory Obudowy Żarówki Oprawy
SYSTEMATYKA SUBSTANCJI
Metale.
MATERIA.
Diody półprzewodnikowe
Menu Koniec Czym jest węgiel ? Węgiel część naszego ciała
2010 nanoświat nanonauka Prowadzimy badania grafenu
Autor: Tomasz Ksiądzyk
Miłosz Andrzejewski IE
Tranzystory z izolowaną bramką
Półprzewodniki Wykonał: Kamil Gręźlikowski kl. 1H.
Narzędzia i środki naprawcze
FOTOWOLTAIKA -PRĄD ZE SŁOŃCA energia na dziś, energia na jutro
Elementy składowe komputera
MIEDŹ – PREZENTACJA Kamil Adam Marudziński Duże Koło Chemiczne w ZS UMK (rok szkolny 2012/2013)
Geografia Wnętrze ziemi Autor: Adam Pronobis I B.
Odmiany alotropowe węgla
Tomasz Kozłowski Kl. II Gim
Z czego jest zbudowana ziemia?
Przewodniki, półprzewodniki i izolatory prądu elektrycznego
Alotropowe odmiany węgla
Paweł Piech, Marcin Świątkowski, Mateusz Maciejewski III TM
Rezystancja przewodnika
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
Opór elektryczny przewodnika Elżbieta Grzybek Michał Hajduk
3. Elementy półprzewodnikowe i układy scalone c.d.
3. Elementy półprzewodnikowe i układy scalone
KRYSZTAŁY – RODZAJE WIĄZAŃ KRYSTALICZNYCH
Kryształy – rodzaje wiązań krystalicznych
Unikatowe właściwości grafenu
Kryształy – rodzaje wiązań krystalicznych
 1. Projektowanie instalacji elektrycznych, sieci elektrycznych 2. Montaż instalacji elektrycznych zgodnie z dokumentacją techniczną.
Odmiany alotropowe węgla
Wpływ światła na fotosyntezę roślin
Przemysław Kulej i Krystian Mzyk Ogniwa paliwowe-napędy wodorowe.
występowanie, właściwości krzemu ważniejsze związki krzemu
Technologie współczesne i przyszłości
Półprzewodniki r. Aleksandra Gliniany.
Metale i izolatory Teoria pasmowa ciał stałych
Nanotechnologie Jakub Segiet GiG gr 2.
Fizyka Prezentacja na temat: „Półprzewodniki i urządzenia półprzewodnikowe” MATEUSZ DOBRY Kraków, 2015/2016.
Odmiany alotropowe węgla
TEMAT: Kryształy – wiązania krystaliczne
Azotki i węgliki Budowa Właściwości.
Własności grafenu Autor: Krzysztof Kowalik Kierunek: Zarządzanie i inżynieria produkcji Data wygłoszenia:
Ciecze Napięcie powierzchniowe  = W/S (J/m 2 ) Miarą napięcia powierzchniowego cieczy jest stosunek.
TRAWIENIE KRZEMU TEKSTURYZACJA
Wiązania w sieci przestrzennej kryształów
Sprzężenie zwrotne M.I.
Zapis prezentacji:

Materiały na tranzystory Materiały dla elektroniki i optoelektroniki Materiały na tranzystory Wykonał: Łukasz Dzikielewski ETI IV Ełk 8.01.2008

Tranzystor Tranzystor - Jest to przyrząd oparty na półprzewodnikach. Jest elementem wzmacniającym sygnały elektryczne. Składa się on z trzech warstw i dwóch złącz. Całość jest umieszczona w obudowie hermetycznej z trzema wyprowadzeniami. Wyróżnia się dwa zasadnicze rodzaje tranzystorów typu n-p-n i p-n-p. W tranzystorach n-p-n pierwszy z obszarów n połączony jest ze stykiem nazywanym emiterem (w bezpośrednim sąsiedztwie styku znajduje się duża koncentracja domieszek), obszar p z tzw. bazą, a drugi obszar n z tzw. kolektorem. Działanie tranzystora polega na tym, że prąd płynący z emitera do kolektora sterowany jest przez prąd bazy.

Tranzystor

Półprzewodniki Półprzewodniki - są to substancje zachowujące się w pewnych warunkach tak jak dielektryk, czyli przedmiot nie przewodzący prądu elektrycznego, ze względu na brak wolnych elektronów, a w pewnym zakresie półprzewodnik staje się przewodnikiem, czyli posiada małą oporność i wolne elektrony, które umożliwiają przepływ prądu elektrycznego. Istota przewodnictwa elektrycznego w półprzewodnikach polega na przemieszczaniu się elektronów swobodnych pod wpływem pola elektrycznego. Ważną cechą półprzewodników jest to, że ich zdolność przewodzenia zależy od wielu czynników, w tym głównie od zawartości domieszek i temperatury. Typowymi materiałami na półprzewodniki są: krzem, german, arsenek galu, lub antymonek galu które w czystej postaci nie przewodzą prądu.

Półprzewodniki Wszystkie półmetale są półprzewodnikami. W roku 2001 holenderscy naukowcy z Uniwersytetu w Delft zbudowali tranzystor składający się z jednej nanorurki węglowej, jego rozmiar wynosi zaledwie jeden nanometr (10 − 9 m), a do zmiany swojego stanu (włączony / wyłączony) potrzebuje on tylko jednego elektronu. Naukowcy przewidują, że ich wynalazek pozwoli na konstruowanie układów miliony razy szybszych od obecnie stosowanych, przy czym ich wielkość pozwoli na dalszą miniaturyzację elektronicznych urządzeń.

Nanorurki węglowe Od momentu odkryciu fulerenów, czyli molekuł składających się z 60 (lub więcej) atomów węgla, liczne laboratoria naukowe no świecie zaczęły zajmować się wieloatomowymi formami węglowych molekuł. W trakcie eksperymentów stwierdzono, że występują one również w postaci rurek o długości znacznie przekraczającej ich średnicę. Nazwano je nanorurkami. Węglowe nanorurki maja średnicę około 1,5 nanometra, a więc 10000 razy mniejsza od grubości ludzkiego włosa. Przypominają arkusz siatki drucianej z sześciokątnymi oczkami zwinięty w rurkę. W Ameryce działa firma badawczo - rozwojowa, która już oferuje do sprzedaży nadwyżki produkowanych w swoich laboratoriach fulerenów C-60, a także nonorurek węglowych.

Nanorurki węglowe W zależności od swojej struktury nanorurki mogą zachowywać się jak metal albo półprzewodnik. Ostatnie pomiary na uniwersytecie Maryland wykazały, że nanorurki są bardzo dobrymi półprzewodnikami. Tranzystory zbudowane z nich świetnie się spisują w temperaturze pokojowej. Według ekspertów węglowe nanorurki mają szansę wyprzeć krzem z układów scalonych w ciągu najbliższych dziesięciu lat. Trzeba jednak opracować nową technologię produkcji tego materiału ponieważ obecnie jest to proces powolny i kosztowny.

Nanorurki węglowe W 2005 roku udało się uzyskać przezroczysty i elastyczny węglowy tranzystor wykonany z nanorurek. Tego typu technologia może być wykorzystana do produkcji przezroczystych, aktywnych wyświetlaczy, jak również inteligentnych szyb. Stosowane mogą być one między innymi w samolotach bojowych oraz w motoryzacji. Nanorurki są również niezwykle wytrzymałymi materiałami i maja dobre przewodnictwo cieplne. Te cechy spowodowały duże zainteresowanie nimi pod kątem możliwości wykorzystania w urządzeniach nanoelektronicznych i nanomechanicznych. Dzięki lepszemu i głębszemu zrozumieniu właściwości elektrycznych węglowych nanorurek i emitowania przez nie światło, można mieć nadzieję na przyśpieszenie tempa rozwoju nanooptoelektroniki.

Nanorurki węglowe

Krzem (Si) Odkrycie i występowanie w przyrodzie. Krzem wydzielił w 1822r. JONS BERZELIUS z krzemionki Si02, uważanej wówczas za pierwiastek, przeprowadzając ją kwasem fluorowodorowym w SiF4 i redukując go potasem. Zawartość krzemu w zewnętrznych strefach Ziemi wynosi 26,95% wag.; jest drugim po tlenie najbardziej rozpowszechnionym pierwiastkiem. Jeden atom krzemu przypada na 4 inne atomy. Krzem stanowi analog węgla, odgrywający podobnie jak węgiel w świecie ożywionym zasadniczą rolę w świecie nieożywionym, ponieważ krzemionka SiO2 w różnych odmianach polimorficznych (kwarc, trydymit, krystobalit) oraz minerały krzemiany i glinokrzemiany stanowią większość skał tworzących skorupę ziemską.

Właściwości fizyczne W zależności od sposobu otrzymywania krzem wydziela się w postaci szarych, twardych i kruchych kryształów albo jako brunatny proszek (zwany krzemem bezpostaciowym). Obie odmiany mają tę samą strukturę krystalograficzną (typ diamentu), a różnią się wielkością kryształów, d=2,65g/cm3, tt<1470oC, tw=2230oC.

Właściwości chemiczne Krzem jest pierwiastkiem czterowartościowym, występuje na stopniu utlenienia +4 (najczęściej) i –4. Jest mało aktywny chemicznie. W temperaturze pokojowej reaguje z fluorem. Po ogrzaniu reaguje z tlenem, tworząc dwutlenek krzemu (krzemionkę) SiO2 oraz z fluorowcami. SiO2 jest bezwodnikiem kwasu metakrzemowego H2SiO3*xH2O. Z wieloma metalami i niemetalami tworzy tzw. krzemki, np. Mg2Si, Ca2Si. Krzem nie ulega działaniu kwasów z wyjątkiem mieszaniny kwasu azotowego i fluorowodorowego -tworzy się kwas fluorokrzemowy: 3Si+18HF+4HNO3=3H2[SiF6]+4NO+8H2O, który po ogrzaniu rozkłada się (H2[SiF6]=SiF4+2HF). Krzem rozpuszcza się łatwo w alkaliach: Si+2NaOH+H2O=Na2SiO3+2H2. Sztucznie wytworzono związki krzemu z wodorem, tzw. krzemowodory (albo silany), analogiczne do węglowodorów. Silany są nietrwałe i nie mają większego znaczenia. Natomiast tzw. silikony, tworzywa krzemoorganiczne zawierające tlen, znajdują zastosowanie praktyczne jako smary, lakiery itd.

German (Ge) Odkrycie i występowanie w przyrodzie. Istnienie germanu przewidywał MENDELEJEW w 1871 r., a odkrył go w 1886 r. CLEMENS WINKLER w minerale argirodycie. Zawwartość germanu w zewnętrznych strefach Ziemi wynosi 7*10-4 % wag. Jeden atom germanu przypada na ok. 500 tysięcy innych atomów. Najważniejsze minerały: argirodyyt 4Ag2S*GeS2, germanit Cu6FeGeS8 i stottyt FeGe(OH)6.

Właściwości fizyczne German jest półmetalem srebrzystobiałym, twardym i kruchym. o właściwościach półprzewodnika, d = 5,4g/cm3, tt = 958oC, tw = 2700oC.

Właściwości chemiczne German jest pierwiastkiem dwu- i czterowartościowym. Wartościowości te odpowiadają stopniom utlenienia +2 (rzadziej) oraz +4. W zwykłej temperaturze german jest odporny na działanie powietrza, a w temperaturze czerwonego żaru tworzy dwutlenek GeO2. German przechodząc w GeO2 i w wodzie królewskiej (powstaje lotny chlorek GeCl4) Z wodorem german tworzy kilka wodorków, tzw. germanów.

Arsenek galu (GaAs) Nieorganiczny związek chemiczny połączenie galu i arsenu. Związek ten jest otrzymywany syntetycznie na potrzeby m.in. przemysłu elektronicznego ze względu na swoje właściwości półprzewodnikowe. Drugi obecnie po krzemie (Si) materiał najczęściej wykorzystywany w mikro- i optoelektronice oraz technice mikrofalowej. Arsenek galu wykazuje większą od krzemu odporność na działanie promieniowania elektromagnetycznego. Urządzenia elektroniczne oparte na GaAs mogą pracować z częstotliwościami przekraczającymi 250 GHz. Parametr półprzewodnictwa - przerwa energetyczna (w temp. 300 K) Bg = 1,424 eV.

Arsenek galu

Antymonek galu (GaSb) Nieorganiczny związek chemiczny połączenie galu i antymonu, półprzewodnik. Jego szerokość przerwy zabronionej wynosi 0,726 eV. Zastosowanie w produkcji m.in. detektorów podczerwieni podczerwonych diod elektroluminescencyjnych laserów tranzystorów

Literatura http://www.frazpc.pl/news/19608-60_rocznica_powstania_tranzystora http://pl.wikipedia.org/wiki/Tranzystor http://gospodarka.gazeta.pl/technologie/1,81011,4765492.html http://www.sciaga.pl/tekst/35438-36-p_przewodniki_i_ich_zastosowanie

Dziękuję za uwagę