Układy eksperymentalne analizy wariancji
Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu jest tylko jeden pomiar. Obiekty przydzielane są do grup w wyniku losowania. Taki plan eksperymentalny nazywa się układem kompletnie zrandomizowanym. Układ ten jest rozszerzeniem testu t-Stu- denta dla zmiennych niepołączonych.
Układ kompletnie zrandomizowany Model: wynik pomiaru na obiekcie i w grupie j ogólna wartość oczekiwana efekt czynnika na poziomie j błąd losowy Zakładamy, że wszystkie błędy są wzajem- nie niezależne i mają taki sam rozkład normalny o wartości oczekiwanej 0:
Układ kompletnie zrandomizowany Hipotezy ANOVA dla tego układu można teraz zapisać tak: H 0 : dla wszystkich j H 1 : istnieje takie j, że W wyniku analizy wariancji otrzymujemy estymaty i Dla jednoznaczności trzeba założyć, że:
Układ kompletnie zrandomizowany Błąd losowy zawiera w sobie wpływ czynników niekontrolowanych w doświadczeniu, w tym zmienność międzyosobniczą jak i wewnątrzosobniczą. Inne układy eksperymentalne, jeśli mogą być zastosowane, służą zmniejszeniu tego błędu przez eliminację wpływu czynników zakłócających.
Układ bloków losowych Model: wynik pomiaru na obiekcie i w grupie j ogólna wartość oczekiwana wpływ czynnika na poziomie j wpływ bloku i błąd losowy
Układ bloków losowych Układ ten jest rozszerzeniem testu t-Stu- denta dla zmiennych połączonych na przypadek wielu grup. Pozwala wyeliminować wpływ jednego źródła zakłóceń. Np. wykonując pomiary na tym samym osobniku eliminujemy wpływ zmienności międzyosobniczej.
Układ kwadratu łacińskiego Układ ten pozwala wyeliminować wpływ dwóch czynników zakłócających ( ). Czynniki te muszą mieć tyle samo poziomów co czynnik będący przedmiotem badania. Model błędu jest tu bardziej skomplikowany.
Układ kwadratu łacińskiego Obiekty przydziela się do grup (wyznaczonych przez kombinacje czynnika badanego i zakłócających) jak zwykle w wyniku losowania.
Układ kwadratu łacińskiego ABCD BCDA CDAB DABC ABCD BADC CDAB DCBA i jeszcze 573 inne możliwości... ABCD DCBA CDAB BADC
Dwuczynnikowy układ kompletnie zrandomizowany Model: wynik pomiaru na obiekcie i w grupie o poziomie j 1. czynnika i poz. k 2. czynnika ogólna wartość oczekiwana wpływ czynnika 1. na poziomie j wpływ czynnika 2. na poziomie k interakcja czynników 1 i 2 na poz. j oraz k błąd losowy
Dwuczynnikowy układ kompletnie zrandomizowany W układzie tym możemy niezależnie weryfikować trzy hipotezy: H 0 : dla wszystkich j H 0 : dla wszystkich k H 0( ) : dla wszystkich j oraz k Tabela analizy wariancji dla tego układu zawiera trzy różne statystyki F.
Dwuczynnikowy układ kompletnie zrandomizowany Przykład: 1. czynnik – pracownik laboratorium 2. czynnik – przyrząd (np. mikroskop) W badaniu możemy niezależnie zweryfikować trzy hipotezy: H 01 : wynik badania nie zależy od laboranta H 02 : wynik badania nie zależy od przyrządu H 0(12) : nie ma interakcji między laborantem a przyrządem.
Dwuczynnikowy układ kompletnie zrandomizowany Możliwe przypadki interakcji: laborantowi najlepiej pracuje się na własnym mikroskopie laborant nie lubi jednego z mikroskopów
Dyskretne zmienne losowe a skale pomiarowe. Gdy zbiór zdarzeń elementarnych jest skończony, odwzorowywanie go w zbiór liczb (czyli tworzenie zmiennej losowej) może być mniej użyteczne niż w przypadku zmiennej losowej ciągłej.
Skala nominalna Jeśli zbiór zdarzeń elementarnych nie wykazuje naturalnego uporządkowania, mówimy o skali nominalnej Przykłady: grupa krwi (0,A,B,AB), rozpoznanie, czynnik etiologiczny, sympatie polityczne (PO,PiS,PSL,...), wyznanie, narodowość, rasa...
Skala porządkowa Gdy w zbiorze zdarzeń istnieje naturalne uporządkowanie, ale wprowadzanie odległości nie ma sensu, mamy do czynienia ze skalą porządkową. Przykłady: wynik leczenia (pogorszenie,b.z., poprawa), wykształcenie (brak, podst., średnie, wyższe), WBC (poniżej, w normie, powyżej)
Skala przedziałowa (równomierna) Gdy w skończonym zbiorze zdarzeń elementarnych istnieje odległość, pre- zentacja wyników w postaci zmiennej losowej jest w pełni uzasadniona. Przykłady: tętno, WBC (tys./mm 3 ), liczba dzieci Gdy rozpiętość wartości jest duża, traktujemy taką zmienną jako ciągłą.
Zmienne skategoryzowane Pomiary o skali nominalnej lub porządkowej nazywamy zmiennymi skategoryzowanymi. Wyniki tego typu badań przedstawia się często w postaci tablicy kontyngencji.
Tablice kontyngencji
Podstawowym narzędziem badania takich tablic jest test niezależności. Gdy oczekiwane liczebności w niektórych polach tabeli są małe (<5), stosuje się tzw. test dokładny (oryginalny test. -Pearsona opiera się na przybliżeniu słusznym przy dużych próbach).
Tablice kontyngencji Szczególnie często spotykamy tablice 2x2 Przykład: Mann i wsp. (1975)
Tablice kontyngencji – iloraz szans szansa 1) p 11 /p 12 2) p 21 /p 22 iloraz szans (odds ratio)
Iloraz szans Estymator ilorazu szans
W postępowaniu z takimi zmiennymi zaciera się często granica między czynnikiem a wynikiem. Iloraz szans nie zmieni się, gdy zamienimy wiersze z kolumnami.
Tablice kontyngencji zmienne połączone Taką tabelę można badać testem McNemary.
Typy badań w naukach medycznych Badania eksperymentalne Badania obserwacyjne kohortowe case-control przekrojowe
Typy badań Badania prospektywne: W badaniach eksperymentalnych przydzielamy obiekty do grup losowo (randomizacja) W badaniu kohortowym obiekt sam wybiera grupę
Typy badań Badania retrospektywne Case-control – wybieramy do badań pod- mioty, u których stwierdzono przynależność do grupy wynikowej (a ustalamy, jakim poziomom czynników objaśniających były poddane). Przekrojowe – podmioty wybieramy losowo z populacji generalnej i ustalamy zarówno grupę wynikową jak i czynniki objaśniające.