Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.

Slides:



Advertisements
Podobne prezentacje
Regresja i korelacja materiały dydaktyczne.
Advertisements

Test zgodności c2.
One flew over... statistics czyli statystyka w 8 godzin
Statystyka Wojciech Jawień
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Estymacja. Przedziały ufności.
Analiza współzależności zjawisk
Zmienne losowe i ich rozkłady
Analiza wariancji jednoczynnikowa
Zmienne losowe i ich rozkłady
Analiza wariancji Marcin Zajenkowski. Badania eksperymentalne ANOVA najczęściej do eksperymentów Porównanie wyników z 2 grup lub więcej Zmienna niezależna.
Skale pomiarowe – BARDZO WAŻNE
Statystyczne parametry akcji
Analiza wariancji Analiza wariancji (ANOVA) stanowi rozszerzenie testu t-Studenta w przypadku porównywanie większej liczby grup. Podział na grupy (czyli.
Metody ekonometryczne
Statystyka w doświadczalnictwie
Statystyka w doświadczalnictwie
Wykład XII fizyka współczesna
Wykład III Fale materii Zasada nieoznaczoności Heisenberga
Nowy kod Statistica 6.1 HEN6EUEKH8.
Analiza korelacji.
Wykład 11 Analiza wariancji (ANOVA)
Wykład 3 Wzór Bayesa, cd.: Wpływ rozkładu a priori.
Program przedmiotu “Metody statystyczne w chemii”
Doświadczalnictwo.
Średnie i miary zmienności
INTERAKCJE MIĘDZY ZMIENNYMI
SKALE POMIAROWE.
Analiza wariancji jednoczynnikowa
Testy nieparametryczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Rozkłady wywodzące się z rozkładu normalnego standardowego
Testy nieparametryczne
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Analiza wariancji jednoczynnikowa.
Testy nieparametryczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Modelowanie ekonometryczne
Hipotezy statystyczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Henryk Rusinowski, Marcin Plis
Seminarium licencjackie Beata Kapuścińska
Co to jest dystrybuanta?
ANALIZA ANOVA - KIEDY? Wiele przedsięwzięć badawczych zakłada porównanie pomiędzy średnimi z więcej niż dwóch populacji lub dwóch warunków eksperymentalnych.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski.
Statystyka medyczna Piotr Kozłowski
Program przedmiotu “Opracowywanie danych w chemii” 1.Wprowadzenie: przegląd rodzajów danych oraz metod ich opracowywania. 2.Podstawowe pojęcia rachunku.
Weryfikacja hipotez statystycznych
Przenoszenie błędów (rachunek błędów) Niech x=(x 1,x 2,...,x n ) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych.
MODELOWANIE ZMIENNOŚCI CEN AKCJI
Podstawowe pojęcia i terminy stosowane w statystyce. Rozkłady częstości Seminarium 2.
Statystyczne parametry akcji Średnie Miary rozproszenia Miary współzależności.
Analiza wariancji.
Korelacje dwóch zmiennych. Korelacje Kowariancja.
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
Testy nieparametryczne – testy zgodności. Nieparametryczne testy istotności dzielimy na trzy zasadnicze grupy: testy zgodności, testy niezależności oraz.
Fundamentals of Data Analysis Lecture 12 Approximation, interpolation and extrapolation.
Treść dzisiejszego wykładu l Szeregi stacjonarne, l Zintegrowanie szeregu, l Kointegracja szeregów.
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Statystyka medyczna Piotr Kozłowski www: 1.
Testy nieparametryczne
Statystyka matematyczna
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
PODSTAWY STATYSTYKI Wykład udostępniony przez dr hab. Jana Gajewskiego
Analiza współzależności zjawisk
Zapis prezentacji:

Układy eksperymentalne analizy wariancji

Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu jest tylko jeden pomiar. Obiekty przydzielane są do grup w wyniku losowania. Taki plan eksperymentalny nazywa się układem kompletnie zrandomizowanym. Układ ten jest rozszerzeniem testu t-Stu- denta dla zmiennych niepołączonych.

Układ kompletnie zrandomizowany Model: wynik pomiaru na obiekcie i w grupie j ogólna wartość oczekiwana efekt czynnika na poziomie j błąd losowy Zakładamy, że wszystkie błędy są wzajem- nie niezależne i mają taki sam rozkład normalny o wartości oczekiwanej 0:

Układ kompletnie zrandomizowany Hipotezy ANOVA dla tego układu można teraz zapisać tak: H 0 : dla wszystkich j H 1 : istnieje takie j, że W wyniku analizy wariancji otrzymujemy estymaty i Dla jednoznaczności trzeba założyć, że:

Układ kompletnie zrandomizowany Błąd losowy zawiera w sobie wpływ czynników niekontrolowanych w doświadczeniu, w tym zmienność międzyosobniczą jak i wewnątrzosobniczą. Inne układy eksperymentalne, jeśli mogą być zastosowane, służą zmniejszeniu tego błędu przez eliminację wpływu czynników zakłócających.

Układ bloków losowych Model: wynik pomiaru na obiekcie i w grupie j ogólna wartość oczekiwana wpływ czynnika na poziomie j wpływ bloku i błąd losowy

Układ bloków losowych Układ ten jest rozszerzeniem testu t-Stu- denta dla zmiennych połączonych na przypadek wielu grup. Pozwala wyeliminować wpływ jednego źródła zakłóceń. Np. wykonując pomiary na tym samym osobniku eliminujemy wpływ zmienności międzyosobniczej.

Układ kwadratu łacińskiego Układ ten pozwala wyeliminować wpływ dwóch czynników zakłócających ( ). Czynniki te muszą mieć tyle samo poziomów co czynnik będący przedmiotem badania. Model błędu jest tu bardziej skomplikowany.

Układ kwadratu łacińskiego Obiekty przydziela się do grup (wyznaczonych przez kombinacje czynnika badanego i zakłócających) jak zwykle w wyniku losowania.

Układ kwadratu łacińskiego ABCD BCDA CDAB DABC ABCD BADC CDAB DCBA i jeszcze 573 inne możliwości... ABCD DCBA CDAB BADC

Dwuczynnikowy układ kompletnie zrandomizowany Model: wynik pomiaru na obiekcie i w grupie o poziomie j 1. czynnika i poz. k 2. czynnika ogólna wartość oczekiwana wpływ czynnika 1. na poziomie j wpływ czynnika 2. na poziomie k interakcja czynników 1 i 2 na poz. j oraz k błąd losowy

Dwuczynnikowy układ kompletnie zrandomizowany W układzie tym możemy niezależnie weryfikować trzy hipotezy: H 0 : dla wszystkich j H 0 : dla wszystkich k H 0( ) : dla wszystkich j oraz k Tabela analizy wariancji dla tego układu zawiera trzy różne statystyki F.

Dwuczynnikowy układ kompletnie zrandomizowany Przykład: 1. czynnik – pracownik laboratorium 2. czynnik – przyrząd (np. mikroskop) W badaniu możemy niezależnie zweryfikować trzy hipotezy: H 01 : wynik badania nie zależy od laboranta H 02 : wynik badania nie zależy od przyrządu H 0(12) : nie ma interakcji między laborantem a przyrządem.

Dwuczynnikowy układ kompletnie zrandomizowany Możliwe przypadki interakcji: laborantowi najlepiej pracuje się na własnym mikroskopie laborant nie lubi jednego z mikroskopów

Dyskretne zmienne losowe a skale pomiarowe. Gdy zbiór zdarzeń elementarnych jest skończony, odwzorowywanie go w zbiór liczb (czyli tworzenie zmiennej losowej) może być mniej użyteczne niż w przypadku zmiennej losowej ciągłej.

Skala nominalna Jeśli zbiór zdarzeń elementarnych nie wykazuje naturalnego uporządkowania, mówimy o skali nominalnej Przykłady: grupa krwi (0,A,B,AB), rozpoznanie, czynnik etiologiczny, sympatie polityczne (PO,PiS,PSL,...), wyznanie, narodowość, rasa...

Skala porządkowa Gdy w zbiorze zdarzeń istnieje naturalne uporządkowanie, ale wprowadzanie odległości nie ma sensu, mamy do czynienia ze skalą porządkową. Przykłady: wynik leczenia (pogorszenie,b.z., poprawa), wykształcenie (brak, podst., średnie, wyższe), WBC (poniżej, w normie, powyżej)

Skala przedziałowa (równomierna) Gdy w skończonym zbiorze zdarzeń elementarnych istnieje odległość, pre- zentacja wyników w postaci zmiennej losowej jest w pełni uzasadniona. Przykłady: tętno, WBC (tys./mm 3 ), liczba dzieci Gdy rozpiętość wartości jest duża, traktujemy taką zmienną jako ciągłą.

Zmienne skategoryzowane Pomiary o skali nominalnej lub porządkowej nazywamy zmiennymi skategoryzowanymi. Wyniki tego typu badań przedstawia się często w postaci tablicy kontyngencji.

Tablice kontyngencji

Podstawowym narzędziem badania takich tablic jest test niezależności. Gdy oczekiwane liczebności w niektórych polach tabeli są małe (<5), stosuje się tzw. test dokładny (oryginalny test. -Pearsona opiera się na przybliżeniu słusznym przy dużych próbach).

Tablice kontyngencji Szczególnie często spotykamy tablice 2x2 Przykład: Mann i wsp. (1975)

Tablice kontyngencji – iloraz szans szansa 1) p 11 /p 12 2) p 21 /p 22 iloraz szans (odds ratio)

Iloraz szans Estymator ilorazu szans

W postępowaniu z takimi zmiennymi zaciera się często granica między czynnikiem a wynikiem. Iloraz szans nie zmieni się, gdy zamienimy wiersze z kolumnami.

Tablice kontyngencji zmienne połączone Taką tabelę można badać testem McNemary.

Typy badań w naukach medycznych Badania eksperymentalne Badania obserwacyjne kohortowe case-control przekrojowe

Typy badań Badania prospektywne: W badaniach eksperymentalnych przydzielamy obiekty do grup losowo (randomizacja) W badaniu kohortowym obiekt sam wybiera grupę

Typy badań Badania retrospektywne Case-control – wybieramy do badań pod- mioty, u których stwierdzono przynależność do grupy wynikowej (a ustalamy, jakim poziomom czynników objaśniających były poddane). Przekrojowe – podmioty wybieramy losowo z populacji generalnej i ustalamy zarówno grupę wynikową jak i czynniki objaśniające.