Dariusz Odejewski Krzysztof Wójcik

Slides:



Advertisements
Podobne prezentacje
Algorytmy – c.d. złożoność algorytmów struktury danych
Advertisements

DOMINOWANIE W GRAFACH Magdalena Lemańska.
Grafy spełniające nierówność Γ(G) < IR(G)
Grafy o średnicy 2 i dowolnej liczbie dominowania
Grafy inaczej, czyli inne modele grafów
Kolorowanie grafów Niech G = (V, E) będzie spójnym grafem nieskierowanym bez pętli. Kolorowaniem wierzchołków grafu nazywa się przypisanie wierzchołkom.
WYKŁAD 6. Kolorowanie krawędzi
ELEMENTY TEORII GRAFÓW
Wykład 6 Najkrótsza ścieżka w grafie z jednym źródłem
Minimalne drzewa rozpinające
Algorytm Dijkstry (przykład)
Temat: WIELOŚCIANY KLASA III P r.
ALGORYTMY I STRUKTURY DANYCH
Ciągi de Bruijna generowanie, własności
-skeletony w przestrzeniach R 2 i R 3 Mirosław Kowaluk Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski.
WYKŁAD 5. Skojarzenia – ciąg dalszy
WYKŁAD 2. Kolorowanie wierzchołków
WYKŁAD 7. Spójność i rozpięte drzewa
WYKŁAD 8. Siła spójności Wierzchołek v nazywamy wierzchołkiem cięcia grafu G, gdy podgraf G-v ma więcej składowych spójności niż G. Krawędź e nazywamy.
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
WYKŁAD 8. Siła spójności A,B – dowolne podzbiory V(G)
KOLOROWANIE MAP.
WYKŁAD 3. Kliki i zbiory niezależne
GRAFY PLANARNE To grafy, które można narysować na płaszczyźnie tak, by krawędzie nie przecinały się (poza swoimi końcami). Na przykład K_4, ale nie K_5.
Drzewa i grafy aktywów na rynkach finansowych
Magda Kusiak Karol Walędzik prof. dr hab. Jacek Mańdziuk
Macierz incydencji Macierzą incydencji grafu skierowanego D = (V, A), gdzie V = {1, ..., n} oraz A = {a1, ..., am}, nazywamy macierz I(D) = [aij]i=1,...,n,
Wycieczka w n-ty wymiar
WYKŁAD 7. Spójność i rozpięte drzewa Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja.
TRANSAKCJE TYLKO ODCZYT TYLKO ZAPIS
Kod Graya.
Minimalne drzewa rozpinające
Przepływy w sieciach. Twierdzenie minimaksowe.
SKIEROWANE Marek Bil Krzysztof Fitrzyk Krzysztof Godek.
Graf - jest to zbiór wierzchołków, który na rysunku przedstawiamy za pomocą kropek oraz krawędzi łączących wierzchołki. Czasami dopuszcza się krawędzie.
Algorytmy i struktury danych
A. Sumionka. Starodawna gra marynarska; Gra dwu i wieloosobowa; Gracze wykonują ruchy naprzemian; Złożona ze stosów, w których znajduje się pewna ilość
Reprezentacja grafów i operacje na grafach na przykładzie algorytmu Dijkstry i algorytmu na odnajdywanie Silnych Spójnych Składowych Temat Opracowali:
Budowa roślin Od komórki do drzewa.
Rodzaje, przechodzenie grafu
ALGORYTMY ROZWIĄZYWANIA GIER C.D.
Języki i automaty część 3.
MECHANIKA NIEBA WYKŁAD r.
Zasady przywiązywania układów współrzędnych do członów.
Algorytm Dijkstry 1 Zbiory: T - zbiór wierzchołków
Dynamika układu punktów materialnych
Algorytmy i Struktury Danych
NIM gra Beata Maciejewska Monika Mackiewicz.
PLANARNOŚĆ i KOLOROWANIE MAP. Problem Jaka jest minimalna liczba kolorów, za pomocą których można pokolorować obszary województw na mapie Polski tak,
Drogi i cykle Eulera w grafach nieskierowanych
WĘDRÓWKI PO GRAFACH Obchody Eulera Cykle Hamiltona.
Algorytmy grafowe Minimalne drzewa rozpinające
Szachy a grafy. Powiązanie szachownicy z grafem Szachownicę można przedstawić jako graf. Wierzchołek odpowiada polu, a krawędzie ruchowi danej figury.
GRA CHOMP. Czym jest chomp? Jest to gra dla dwóch osób, rozgrywana na prostokątnej tablicy, zwanej „tabliczką czekolady”
Autor: Michał Salewski
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Dynamika ruchu obrotowego
SZTUCZNA INTELIGENCJA
Modelowanie matematyczne – złożoność obliczeniowa, teoria a praktyka
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów
Analiza sieci społecznych
Metody Badań Operacyjnych Michał Suchanek Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Zagadnienia transportowe Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
czyli geometria (i nie tylko) w sztuce. Fraktale w Logo Komeniuszu
Parametry rozkładów Metodologia badań w naukach behawioralnych II.
Prostopadłościan i sześcian.
Rozpatrzmy następujące zadanie programowania liniowego:
Działania na grafach Autor: Anna Targońska.
Algorytmy i struktury danych
ALGORYTMY I STRUKTURY DANYCH
Zapis prezentacji:

Dariusz Odejewski Krzysztof Wójcik Green Hackenbush Dariusz Odejewski Krzysztof Wójcik

Rodzaje i zasady Hackenbusha W grze Green Hackenbush chodzi o ścinanie krawędzi w ”zakorzenionym” grafie i usuwanie tych części grafu, które nie są połączone z podłożem. ”Zakorzeniony graf” jest to graf nieskierowany z każdą krawędzią, połączoną pewna ścieżką z tak zwanym podłożem. W tej wersji Hackenbusha obaj gracze mogą ściąć każdą z krawędzi. Istnieje również odmiana tej gry tzw. Blue-red Hackenbush w której gracze maja przydzielony swój kolor i mogą ścinać krawędzie tylko swojego koloru. Gracze poruszają się na zmianę. Wygrywa gracz, który wykona ostatni ruch.

Bamboo Stalks Bamboo Stalks jest to najprostsza wersja Green Hackenbusha. W grze tej gracz ścina dowolna krawędź i usuwa wszystko co było nad nią. Każda łodyga składająca się z n krawędzi może zostać zmieniona na łodygę z między n-1 a 0 krawędzi. Tak więc pojedyncza łodyga z n liczbą krawędzi jest równoważna stosowi o n kulkach w grze Nim.

Bamboo Stalks. (przykład)

Bamboo Stalks. (przykład) W przykładzie mamy trzy łodygi, co możemy rozpatrywać jako 3 stosy w grze Nim o odpowiednio 3, 4, 5 kulkach. Wartość Sprague-Grundy tego układu wynosi 2 zatem jest to N-pozycja która możemy zamienić na P-pozycję po ścięciu drugiej krawędzi od dołu w najmniejszej łodydze. Zauważmy, że układ po prawej ma wartość Sprague- Grundy równa 0, co oznacza, że jest to P-pozycja.

Green Hackenbush na drzewach. W tej odmianie gry mamy „zakorzenione” drzewa, w których wyróżniamy wierzchołek „korzeń” oraz inne wierzchołki połączone pewna ścieżką z korzeniem ale bez cykli. Zasady gry są analogiczne jak w przypadku łodyg bambusowych. Problem sprowadza się do przyrównania każdego drzewa do pojedynczej łodygi. Pozwoli nam to znaleźć wartość Sprague- Grundy całego drzewa. W tym celu wykorzystujemy tak zwaną „ Colon Principle”, która mówi: gdy gałęzie schodzą się do jednego wierzchołka można je zamienić na łodygę, której długość równa się ich Nim sumie.

Green Hackenbush na drzewach. (przykład)

Green Hackenbush na drzewach. (przykład c.d.)

Green Hackenbush na drzewach. (przykład c.d.) Po przekształceniu wszystkich drzew w łodygi obliczamy wartość Sprague-Grundy. W przykładzie drugim jest to 1+8+4=13. Ponieważ nie jest to 0, gracz do którego należy teraz ruch jest w pozycji wygrywającej. Zauważmy, że aby pozostawić drugiego gracza w P-pozycji, musimy tak uciąć środkowe drzewo aby jego wartość Sprague-Grundy wynosiła 5, wówczas wartość Sprague-Grundy całego układu będzie wynosiła 0. Aby tego dokonać musimy ( odnosząc się do przekształcenia na poprzednim przykladzie o wartości 3, 2 i 6 ) pozbyć się gałęzi o wartości 3 lub ściąć najwyższą krawędź środkowej gałęzi.

Green Hackenbush na dowolnych grafach. W tej odmianie gry rozpatrujemy grafy, w których mogą występować cykle i pętle oraz wiele segmentów może stykać się z podłożem. Podobnie jak w poprzednich przykładach te grafy również możemy przyrównać do stosów Nim. W tym celu wykorzystamy tzw. „Fusion Principle”. Łączymy dwa sąsiadujące wierzchołki w jeden tworząc z krawędzi łączącej je pętle. W przypadku Green Hackenbusha pętla może zostać zamieniona na liść.

„The Fusion Principle” „The Fusion Principle”: wierzchołki w dowolnym cyklu mogą być łączone bez zmiany wartości Sprague-Grundy całego grafu. Dzięki tej zasadzie dowolny graf możemy zamienić na drzewo, a następnie w łodygę.

Green Hackenbush na dowolnych grafach.

Łączenie wierzchołków. (przykład) Rozważmy przykład z rysunku. Musimy zauważyć, że podłoże traktujemy jako pojedynczy wierzchołek. Następnie poprzez łączenie wierzchołków otrzymujemy łodygę o wartości 1.

Łączenie wierzchołków. Zauważmy, że cykl o nieparzystej ilości krawędzi redukuje się do jednej krawędzi, natomiast cykl o parzystej ilości do pojedynczego wierzchołka. Odnieśmy się do przykładu. Choinkę składającą się z cyklu o długości 4 możemy przekształcić w pojedynczą łodygę o wartości 1 natomiast komin w domku staje się pojedynczym wierzchołkiem.

Przykład 2

Obliczanie wartości Sprague-Grandy. (przykład) Wykorzystując poznane dotychczas metody możemy pokazać, że wartość Sprague-Grundy całego domku wynosi 3 a żonglera 4.

Dziękujemy za uwagę…

Bibliografia Game Theory – Thomas S. Ferguson www.wikipedia.pl