Ruch w dwóch i trzech wymiarach

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Wykład 3 Opis ruchu 1.1 Zjawisko ruchu 1.2 Układy odniesienia
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład Ruch po okręgu Ruch harmoniczny
Kinematyka.
Teoria maszyn i części maszyn
Kinematyka Definicje podstawowe Wielkości pochodne
Opracował: Karol Kubat I kl.TŻ
Ruch i jego parametry Mechanika – prawa ruchu ciał
Studia Podyplomowe „Informatyka” dla Nauczycieli
Kinematyka punktu materialnego
Temat: Ruch jednostajny
Ruch i jego parametry Mechanika – prawa ruchu ciał
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
Kinematyka.
Wektory i skalary zwrot długość (moduł, wartość bezwzględna) kierunek
Pola sił i ruchy Dział III.
Wykład V 1. ZZP 2. Zderzenia.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Pole magnetyczne
FIZYKA dla studentów POLIGRAFII Wykład 2
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Temat: Przyspieszenie średnie i chwilowe
Lekcja fizyki. Rzut ukośny ciała.
Nieinercjalne układy odniesienia
Temat: Tor ruchu a droga.. 2 Tor ruchu to linia, po jakiej poruszało się ciało. W zależności od kształtu toru ruchu ciała wszystkie ruchy dzielimy na:
Ruch i jego opis Dział I.
Ruch i jego względność..
Autor: Wojciech Haba kl. IIIa V LO Kielce
Kinematyka SW Sylwester Wacke
T Zsuwanie się bez tarcia Zsuwanie się z tarciem powrót.
Ruch i jego opis Powtórzenie.
ZROZUMIEĆ RUCH Dane INFORMACYJNE Międzyszkolna Grupa Projektowa
RUCHY KRZYWOLINIOWE Opracowała: mgr Magdalena Gasińska.
Dane Informacyjne ID grupy: 97/41_UGP_2 Zespół Szkół nr 5 w Szczecinku
Ruch jednostajny po okręgu
Ruch złożony i ruch względny
podsumowanie wiadomości
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
RUCH PŁASKI BRYŁY MATERIALNEJ
3. Równowaga statyczna i dynamiczna w skali makro- i mikroskopowej.
dr hab. inż. Monika Lewandowska
RUCH KULISTY I RUCH OGÓLNY BRYŁY
PLAN WYKŁADÓW Podstawy kinematyki Ruch postępowy i obrotowy bryły
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Kinematyka zajmuje się ilościowym badaniem ruchu ciał z pominięciem czynników fizycznych wywołujących ten ruch. W mechanice technicznej rozważa się zagadnienia.
Pochodna funkcji jednej zmiennej. Pochodna wektora.
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat: Matematyczny opis ruchu drgającego
Informatyka +.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Autor: Oskar Giczela kl. I TŻŚ. Jest to ruch, w którym zmienia się kierunek ruchu, a nie zmienia się wartość prędkości. Szczególnym przypadkiem tego ruchu.
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Ruch drgający Ruch, który powtarza się w regularnych odstępach czasu,
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych
1 informatyka +. Ruch jednostajny po okręgu Zbigniew Kazimierowicz Andrzej Dowgiert informatyka + 2.
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Zjawiska ruchu Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
FIZYKA KLASA I F i Z Y k A.
Dynamika bryły sztywnej
POMIAR PRZYSPIESZENIA ZIEMSKIEGO PRZY POMOCY PIŁECZKI TENISOWEJ „Fizyka da się lubić 2016”
Mechanika płynów Kinematyka płynów.
Ruch złożony i ruch względny Prowadzący: dr Krzysztof Polko
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

Ruch w dwóch i trzech wymiarach Jak opisać taki ruch?

Położenie i przemieszczenie y Do określenia położenia cząstki stosujemy zwykle wektor położenia r. Wektor r ma początek w początku układu współrzędnych, a koniec w punkcie, w którym znajduje się cząstka. r z x r = rxi + ryj + rzk Jeśli w pewnym przedziale czasu, wektor położenia zmienia się, przemieszczenie w tym przedziale czasu wynosi: Dr = r2 - r1

Prędkość średnia i chwilowa Jeśli w przedziale czasu Dt cząstka doznała przemieszczenia Dr: vsr = Dr/ Dt Kierunek vsr jest taki sam jak kierunek przemieszczenia Dr. styczna Prędkość chwilowa: y 2 v Dr 1 Kierunek prędkości chwilowej v cząstki jest zgodny z kierunkiem stycznej do toru cząstki w punkcie, w którym się ona znajduje. r1 r2 x

Przyśpieszenie średnie i chwilowe Gdy prędkość cząstki się zmienia z v1 na v2, w przedziale czasu Dt, to jej przyśpieszenie średnie: asr = Dv/ Dt Przyśpieszenie chwilowe:

Rzut ukośny Cząstka porusza się z pewną prędkością początkową v0 oraz z przyśpieszeniem ziemskim g, skierowanym pionowo w dół.

Rzut ukośny - przykłady

v0x = v0cosa oraz v0y= v0sina Rzut ukośny – analiza Rozważmy ruch cząstki wyrzuconej z prędkością początkową v0. v0 = v0xi + v0yj v0x = v0cosa oraz v0y= v0sina Zasięg rzutu R – droga, którą przebywa cząstka w poziomie do chwili jej powrotu na wysokość, z której została wyrzucona.

Dwie piłki Jedna z piłek została upuszczona, druga wystrzelona poziomo. Ruch w pionie obu piłek jest taki sam. Oznacza to, że ruch w poziomie nie wpływa na ruch w pionie. Wniosek: w rzucie ukośnym ruchy cząstki w kierunku poziomym i w kierunku pionowym można traktować jako niezależne.

Paradoks Buddyjskiego Mnicha Pewnego dnia, dokładnie o świcie, Buddyjski Mnich zaczął wędrówkę krętą ścieżką do klasztoru na szczycie wysokiej góry. Mnich szedł ze zmienną prędkością, zatrzymując się wiele razy by odpocząć i zjeść suszone owoce, które miał ze sobą. Dotarł do klasztoru na krótko przed zachodem słońca. Po wielu dniach medytacji, rozpoczął podróż powrotną, idąc tą samą drogą, rozpoczynając również o świcie, idąc ze zmienną prędkością oraz robiąc wiele postojów. Jego średnia prędkość w dół była większa niż średnia prędkość pod górę. Czy istnieje miejsce na drodze, w którym mnich przebywał podczas wędrówki pod górę i w dół, dokładnie o tej samej porze? Rozwiązanie: wyobraźmy sobie dwóch mnichów wyruszających o świcie. Jeden idzie do góry, drugi schodzi w dół. Muszą się oni po drodze spotkać!

Rzut ukośny – analiza Jesteśmy przygotowani do analizy rzutu ukośnego, tzn. niezależnego opisu ruchu cząstki w kierunku poziomym i w kierunku pionowym. Ruch w poziomie: Dla: x0 = 0 v0x = v0cosa ax = 0 Dostajemy: x = (v0cosa)t

Rzut ukośny – analiza Ruch w pionie: vy = v0y+ ayt vy = (v0sina)t - gt Dla: v0y = v0sina ay = -g Dostajemy: Podobnie, z: vy = v0y+ ayt Dostajemy: vy = (v0sina)t - gt

Rzut ukośny – równanie toru Równanie toru cząstki można wyznaczyć eliminując t z równań ruchu. Po przekształceniach dostajemy: Równanie ma postać: y = ax+bx2 Jest to równanie paraboli.

Parabola y = x2 http://www.zapiks.com/7d-slow-motion-bmx-1.html

Rzut ukośny – zasięg rzutu Zasięg rzutu R – droga, którą przebywa cząstka w poziomie do chwili jej powrotu na wysokość, z której została wyrzucona. Podstawiamy: sina x = R = (v0cosa)t Po rozwiązaniu: sin2a Wniosek: zasięg R w poziomie jest największy dla pocisku wystrzelonego pod kątem 45o

Opór powietrza

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu Ruch cząstki jest ruchem jednostajnym po okręgu jeśli porusza się ona po okręgu lub kołowym łuku z prędkością o stałej wartości bezwzględnej. Wartość prędkości jest stała ale zmienia się jej kierunek, ruch cząstki jest więc ruchem przyśpieszonym. Przyśpieszenie w ruchu jednostajnym po okręgu nazywamy przyśpieszeniem dośrodkowym.

Ruch jednostajny po okręgu Wektor prędkości jest zawsze styczny do okręgu i skierowany w kierunku ruchu cząstki. Wektor przyśpieszenia jest zawsze skierowany wzdłuż promienia okręgu, ku jego środkowi (przyśpieszenie dośrodkowe).

Ruch jednostajny po okręgu Przyśpieszenie dośrodkowe: Okres obiegu:

Przeciążenie Ile wynosi przyśpieszenie, w jednostkach g, pilota myśliwca F-22 pokonującego z prędkością o wartości v = 2500 km/h (694 m/s) kołowy łuk o promieniu krzywizny r = 5.8 km? Przyśpieszenie dośrodkowe: a = v2/r = (694 m/s)2/5800 m = 83m/s2 = 8.5g Roller-coaster: poniżej 3g Zanik świadomości u osób bez treningu: 4 - 6g Osoba po treningu i w skafandrze może wytrzymać do 9g.

Wirówka http://www.youtube.com/watch?v=FBJegTfF9Kg http://www.youtube.com/watch?v=tMVNWZ4FzwM&feature=fvw

G-Force

Test W piątek 28.10 na wykładzie odbędzie się test z działów jednostki, wektory i kinematyka