1 Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna.

Slides:



Advertisements
Podobne prezentacje
Infrastruktura kluczy publicznych
Advertisements

IDENTYFIKACJA UŻYTKOWNIKA W SIECI INTERNET
DYSKRETYZACJA SYGNAŁU
Szyfrowanie symetryczne 1
KRYPTOGRAFIA A B C D E F G H I J K L Ł M N O P R S T U W X Y Z
KRYPTOGRAFIA KWANTOWA
MATEMATYKA-ułamki zwykłe
KRYPTOLOGIA =KRYPTOGRAFIA+KRYPTOANALIZA
Podstawy kryptografii
Metody ataku na algorytmy kryptograficzne oparte na informacjach z ulotu elektromagnetycznego Robert Borzęcki.
Bartek Wydro III B Zarys historii kryptologii ze szczególnym uwzględnieniem roli Polaków w łamaniu kodów maszyny Enigma. ZAGADKA ENIGMY.
Kryptografia i kryptoanaliza
PKI, OPIE Auth Mateusz Jasiak.
Kryptografia – elementarz cześć I
Zapis informacji Dr Anna Kwiatkowska.
Techniczne aspekty realizacji podpisu cyfrowego z zastosowaniem algorytmu RSA mgr inż. Wojciech Psik Zespół Szkół Elektronicznych i Ogólnokształcących.
Ochrona danych wykład 2.
Ochrona danych wykład 3.
Tomasz Kopera Konrad Kurdej Ariel Salm
Dążenie do odkrywania tajemnic tkwi głęboko w naturze człowieka, a nadzieja dotarcia tam, dokąd inni nie dotarli, pociąga umysły najmniej nawet skłonne.
Dążenie do odkrywania tajemnic tkwi głęboko w naturze człowieka, a nadzieja dotarcia tam, dokąd inni nie dotarli, pociąga umysły najmniej nawet skłonne.
Projekt edukacyjny klasy IID
Kod Graya.
opracowanie: Agata Idczak
MATEMATYCZNE METODY SZYFROWANIA
ALGORYTMY KLASYCZNE ________ FRAKTALE
Wykonał: mgr inż. Maksymilian Szczygielski
ANNA BANIEWSKA SYLWIA FILUŚ
Zastosowania ciągów.
ZASTOSOWANIE KRYPTOGRAFII W SZYFROWANIU DANYCH
Systemy Liczenia - I Przez system liczbowy rozumiemy sposób zapisywania i nazywania liczb. Rozróżniamy: pozycyjne systemy liczbowe i addytywne systemy.
Podpis elektroniczny Między teorią a praktyką
Stało- i zmiennopozycyjna reprezentacja liczb binarnych
Matematyka i system dwójkowy
Technologie informacyjne mgr inż. Marek Malinowski Zakład Matematyki i Fizyki Wydz. BMiP PW Płock.
Szyfrowanie i deszyfrowanie
Andrzej Majkowski informatyka + 1.
Wymiana podstawy oraz sprawdzanie autentyczności partnera. Algorytm wymiany małego klucza używaniem metody Diffiego - Hellmana.
JĘZYKI ASSEMBLEROWE ..:: PROJEKT ::..
SZYFROWANIE Kacper Nowak.
Andrzej Majkowski 1 informatyka +. 2 Bezpieczeństwo protokołu HTTP Paweł Perekietka.
Kryptologia przykład metody RSA
Metody matematyczne w inżynierii chemicznej
Algorytm znajdowania Największego Wspólnego Dzielnika.
Aby do danych nie dostała się postronna osoba ( hacker ) stosuje się różne metody kryptograficzne.
 Kryptografia - dziedzina wiedzy obejmująca zagadnienia związane z ukrywaniem wiadomości (danych) przed nieupoważnionymi podmiotami przy pomocy ich przekształcania.
Algorytmy asymetryczne i haszujące
Rodzaje Liczb JESZCZE SA TAKIE
Rodzaje liczb.
METODY REPREZENTOWANIA IFORMACJI
9. IMPLEMENTACJE ALGORYTMÓW KRYPTOGRAFICZNYCH
8. MATEMATYCZNE PODSTAWY ALGORYTMÓW KRYPTOGRAFICZNYCH
WYBRANE ALGORYTMY OPTYMALIZACYJNE
7. PODSTAWY KRYPTOGRAFII
Projekt firmowej sieci Wi-Fi
Liczby 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …(i tak dalej) nazywamy liczbami naturalnymi. Tak jak z liter tworzy się słowa, tak z cyfr tworzymy liczby. Dowolną.
Liczby naturalne i całkowite Spis treści Definicje Działania na liczbach Wielokrotności liczb naturalnych Cechy podzielności Przykłady potęg,potęgi o.
Matematyczne podstawy kryptografii Stefan Dziembowski Instytut Informatyki, Uniwersytet Warszawski.
Liczbami naturalnymi nazywamy liczby 0,1,2,3,..., 127,... Liczby naturalne poznaliśmy już wcześniej; służą one do liczenia przedmiotów. Zbiór liczb.
PROBLEMATYKA BEZPIECZEŃSTWA SIECI RADIOWYCH Algorytm szyfrowania AES
SIECI KOMPUTEROWE WYKŁAD 8. BEZPIECZEŃSTWO SIECI
SIECI KOMPUTEROWE WYKŁAD 8. BEZPIECZEŃSTWO SIECI
Podstawy Informatyki.
EWOLUCJA SIŁY SZYFRÓW ABCDEFGHIJKLMNOPQRSTUVWXYZ
Liczby pierwsze: szukanie, rozmieszczenie, zastosowanie, ciekawostki. Liczby pierwsze: szukanie, rozmieszczenie, zastosowanie, ciekawostki. Kinga Cichoń.
KRYPTOGRAFIA KLUCZA PUBLICZNEGO WIKTOR BOGUSZ. KRYPTOGRAFIA KLUCZA PUBLICZNEGO Stosując metody kryptograficzne można zapewnić pełną poufność danych przechowywanych.
Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych
Liczby pierwsze oraz kryptologia
SHA1 – Secure Hash Algorithm
Zapis prezentacji:

1 Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący się zna część informacji np. co do metody szyfrowania przykład ze starożytności: około 489 r. p.n.e. tatuaż na głowie niewolnikaHistiajos  Aristagoras z Miletu niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.) ugotowane jajko (Giovanni Porta, XVI wiek)

2 Kryptografia-1 -kryptografia - przetworzenie komunikatu w taki sposób, aby stał się nieczytelny; -steganografia - ukrycie faktu istnienia komunikatu. Gdy kanał transmisji jest znany potencjalnym włamywaczom, pozostaje tylko kryptografia. (”nawet wiedząc że jest to wiadomość, nie potraficie jej odczytać”)

3 Dygresja o steganografii steganografia właściwa (czysta) - siła techniki opiera się na nieznajomości metody przez stronę atakującą. steganografia z kluczem prywatnym - przed rozpoczęciem komunikacji strony ustalają klucz steganograficzny wykorzystywany w sposób zależny od metody, istotny problem to przekazanie klucza w bezpieczny sposób (podsłuchujący znają metodę, ale nie znają klucza); np. metoda modyfikacji najmniej znaczącego bitu plików grafiki rastrowej czy cyfrowo zapisanego dźwięku.

4 Dygresja o steganografii steganografia z kluczem publicznym i prywatnym - podobnie jak w asymetrycznych systemach kryptograficznych używane są dwa klucze - publiczny i prywatny. Klucz publiczny (jawny) wykorzystywany jest przy osadzaniu wiadomości w nośnej, natomiast klucz prywatny przy jej wyodrębnianiu. Podsłuchujący znają metodę, ale nie znają klucza prywatnego. (np. klucz publiczny to zrobienie zdjęcia, zaś klucz prywatny to szczególny proces chemiczny w którym zdjęcie jest wywoływane i utrwalane)

5 Kryptografia-2 Algorytmy kryptograficzne inaczej nazywane szyframi szyfrowanie,deszyfrowanie Idealna sytuacja: szyfrowanie i deszyfrowanie łatwe, dane zaszyfrowane niedostępne dla osób postronnych (potencjalni włamywacze) W szyfrowaniu jako zabezpieczenia używa się specjalnych informacji zwanych kluczem.

6 Kryptografia-3 Szyfrowanie ze względu na podział kluczy: -szyfrowanie symetryczne (ten sam klucz od szyfrowania i do deszyfrowania) -szyfrowanie asymetryczne: klucz szyfrujący (inaczej:publiczny) oraz klucz deszyfrujący (inaczej:prywatny)

7 Kryptografia-4 DES – (Data Encryption Standard) – najpopularniejszy szyfr symetryczny; np. podobnego używała niemiecka ENIGMA podczas II Wojny Światowej. Blok tekstu oryginalnego szyfruje się przez wykonanie na nim ciągu permutacji i podstawień. Te permutacje i podstawienia są funkcją np. 16 podkluczy pochodzących od klucza początkowego, KP.Aby zaszyfrować blok, do danych stosuje się po kolei klucze K1,..,K16, za pomocą każdego wykonuje się pewne operacje. Przy odszyfrowywaniu klucze są stosowane w odwrotnej kolejności.

8 Kryptografia-5 RSA – Rivest-Shamir-Adleman (szyfr asymetryczny, czyli z kluczem publicznym i kluczem prywatnym) oparty jest na własnościach liczb pierwszych, w tym na własnościach tzw. funkcji Eulera f(n) f(n) – ile jest liczb naturalnych mniejszych od n, względnie pierwszych z n (taką funkcje wprowadzamy) Def. Dwie liczby są względnie pierwsze, jeśli jedynym ich wspólnym dzielnikiem naturalnym jest liczba 1

9 Kryptografia-6 Bezpieczeństwo RSA zależy od wyboru dwóch jak największych liczb pierwszych (stosuje się liczby co najmniej 200-cyfrowe w zapisie dziesiętnym) p i q.Tworzy się n = p * q Następnie dobiera się niedużą liczbę e (najlepiej jako liczbę pierwszą), która musi być względnie pierwsza z (p-1)(q-1). Klucz publiczny Pu=(e,n) Korzysta się z tego, że mnożenie jest dobrą funkcją nieodwracalną, tzn. łatwo się mnoży, ale odgadnąć z wyniku jakie jest p i q jest niesłychanie pracochłonne.Dlaczego znajomość p i q jest potrzebna do złamania szyfru?

10 Kryptografia-7 szyfrowanie RSA:

11 Kryptografia-8 deszyfrowanie RSA:

12 Kryptografia-9 RSA Okazuje się, że jeśli znane są p oraz q, to istnieje algorytm (rozszerzony algorytm Euklidesa do znajdowania największego wspólnego podzielnika i odwrotności modulo) przy pomocy którego można znaleźć wartość d. Klucz prywatny Pr=(d,n) Natomiast nawet znajomość liczb e oraz n, czyli pełnego klucza publicznego praktycznie nie pomaga ! w deszyfrowaniu

13 Kryptografia-10 RSA dodatkowo dla potrzeb algorytmu RSA stosuje się bardzo wydajną unikająca tworzenia dużych liczb pośrednich metodę wyliczania wielkości (tzw. metoda binarnego kwadratu i mnożenia)

14 Kryptografia-11 static Huge modexp(Huge a, Huge b, Huge n) { Huge y; /* Wyliczamy pow(a, b) % n korzystając z metody binarnego kwadratu i mnożenia. na następnej folii... */

15 Kryptografia-12a y = 1; while (b != 0) { if (b & 1) y = (y * a) % n; a = (a * a) % n; b = b >> 1; } return y; } /* koniec funkcji */

16 Kryptografia-12b oto w jaki sposób algorytm binarnego kwadratu i mnożenia działa: 1)wykorzystuje się, że (liczba1 * liczba2) modulo n jest równe [((liczba1) modulo n) * ((liczba2) modulo n)] modulo n 2) korzysta się z oczywistej własności, że

17 Kryptografia-12c teraz wystarczy zauważyć, że w zapisie binarnym liczby jej kolejne wyższe bity oznaczają kolejne potęgi liczby 2, np. jeśli liczba b w zapisie dwójkowym ma zapis , to oznacza to

18 Kryptografia-12d y = 1; while (b != 0) { if (b & 1) y = (y * a) % n; a = (a * a) % n; b = b >> 1; } return y; } /* koniec funkcji */

19 Kryptografia-13 void rsa_encipher(Huge plaintext, Huge *ciphertext, Huge e, Huge n) { *ciphertext = modexp(plaintext, e, n); return; }/* koniec funkcji szyfrującej */

20 Kryptografia-14 void rsa_decipher(Huge ciphertext, Huge *plaintext, Huge d, Huge n) { *plaintext = modexp(ciphertext, d, n); return; }/* koniec funkcji deszyfrującej */

21 Kryptografia-15 jeszcze uwaga: w RSA informację szyfruje się blokami;blok niepełny musi być uzupełniony do bloku pełnego (praktycznie dotyczy to tylko ostatniego bloku) długość bloku: nie może być dłuższa (w bitach) niż

22 Kryptografia-16 napisano w roku 2001: ”If p and q are each 1024 bits long, the Sun will burn out before the most powerful computers presently in existence can factor your n into p and q ” Nie zostało udowodnione, że nie ma szybkich metod faktoryzacji liczby n. Nie zostało udowodnione, że jedynym sposobem złamania RSA jest dokonanie faktoryzacji liczby n.

23 Kryptografia-17 d = (x(p-1)(q-1) + 1)/e Aby znaleźć d, wystarczy znaleźć takie naturalne x, by powyższa wartość d była całkowita poniżej adres strony z algorytmem Euklidesa