Materiały pochodzą z Platformy Edukacyjnej Portalu

Slides:



Advertisements
Podobne prezentacje
Materiały pochodzą z Platformy Edukacyjnej Portalu
Advertisements

Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Zapis prezentacji:

Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl mogą być wykorzystywane przez jego Użytkowników wyłącznie w zakresie własnego użytku osobistego oraz do użytku w szkołach podczas zajęć dydaktycznych. Kopiowanie, wprowadzanie zmian, przesyłanie, publiczne odtwarzanie i wszelkie wykorzystywanie tych treści do celów komercyjnych jest niedozwolone. Plik można dowolnie modernizować na potrzeby własne oraz do wykorzystania w szkołach podczas zajęć dydaktycznych.

WEKTORY W UKŁADZIE WSPÓŁRZĘDNYCH

Dowolne punkty A i B umieszczone w układzie współrzędnych mogą stworzyć wektor o początku w punkcie A i końcu w punkcie B. B A

Przykład:

Zadanie 1. Wyznacz współrzędne i długość wektora jeżeli: b)

c) d)

Dowolne wektory o podanych współrzędnych można dodawać, odejmować, mnożyć przez dowolną liczbę rzeczywistą:

Zadanie 2. Wykonaj zaznaczone działania mając dane wektory: b)

c) d) e)

Zadanie 3. Wyznacz współrzędne punktu A jeżeli:

b)

Zadanie 4. Wyznacz współrzędne środka wektora jeżeli:

Zadanie 5. Wyznacz współrzędne końca wektora jeżeli środek wektora ma współrzędne:

Zadanie 6. Dane są wierzchołki A(-2,-4); B(0,1) równoległoboku ABCD oraz punkt S(-1,2) – punkt przecięcia jego przekątnych. Wyznacz współrzędne pozostałych wierzchołków równoległoboku. C D S B A

Odp.: Pozostałymi wierzchołkami równoległoboku są punkty: C=(0,8)

Zadanie 7. Wyznacz współrzędne punktu A’ będącego obrazem punktu A(4,-1) w symetrii względem prostej k o równaniu 4x-2y+8=0. k: Wyznaczamy prostą prostopadłą do prostej k i przechodzącą przez punkt A.

Wyznaczamy współrzędne punktu P przecięcia się dwóch prostych, tworzymy układ równań:

Odp.: Szukanym punktem jest punkt A’.

Zadanie 8. Dla jakiej wartości m i n wektory i są równe? Odp.: Dla n=2 oraz m=8 wektory są równe.