Wytrzymałość materiałów Wykład - 5 r.a. 2018/2019
SPRAWY ORGANIZACYJNE Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Prowadzący: dr hab. inż. Mirosław K. Gerigk, prof. nadzw. PG e-mail: mger@pg.gda.pl Wydział Mechaniczny PG Katedra Mechaniki i Mechatroniki, p. 107 WM Konsultacje: środy: 13.00-15.00
Wykład W5: Wytrzymałość belek – zginanie: - Definicje, w tym siły tnącej, momentu gnącego - Zależności różniczkowe przy zginaniu belek - Reakcje więzów - Równania momentów gnących oraz sił poprzecznych (tnących) - Wykresy momentów gnących oraz sił poprzecznych (tnących) - Przypadki szczególne zginania belek - Czyste zginanie – założenia - Model belki odkształcalnej przy czystym zginaniu - Moment gnący i naprężenia przy zginaniu belki - Naprężenia dopuszczalne na zginanie - Warunek wytrzymałości dla naprężeń dopuszczalnych na zginanie - Przykłady praktyczne belek zginanych Przykład obliczeniowy: Analiza wytrzymałości na zginanie na przykładzie wybranej belki. © Prof. Krzysztof Kaliński
Wytrzymałość belek – zginanie: Podstawowe definicje Belka – pręt obciążony siłami lub momentami zewnętrznymi, których wektory przecinają oś pręta pod kątem prostym. x – oś belki, y,z – osie prostopadłe do osi belki Moment gnący Mg – suma algebraiczna momentów obciążeń zewnętrznych (F – siła skupiona, q – obciążenie rozłożone w sposób ciągły wzdłuż długości belki, tzw. obciążenie ciągłe, M – moment skupiony) działających w płaszczyźnie przekroju belki, np. xy 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Moment gnący jest dodatni, jeżeli zgina belkę wypukłością do dołu. F Mg x q x M M Mg y q F y Moment gnący stanowi obciążenie wybranego przekroju belki - nie należy mylić z obciążeniem zewnętrznym, czyli Siła poprzeczna (tnąca) T – suma algebraiczna składowych sił zewnętrznych prostopadłych do osi belki, działających w płaszczyźnie przekroju belki (np. xy) po lewej stronie rozważanego przekroju poprzecznego belki 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Konwencja znaków T F x x y y F T Zginanie nierównomierne – Mg0, T0 Zginanie równomierne (czyste) – Mg0, T=0 – belki o dużej rozpiętości Założenie upraszczające – wówczas siły zewnętrzne obciążające ciało odkształcalne można zredukować do pary sił obciążającej określony przekrój. Ścinanie pręta – Mg=0, T0 – belki o bardzo małej rozpiętości 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Zależności różniczkowe przy zginaniu q(x) Mg+d Mg T Mg x T+dT dx y Warunki równowagi elementu belki 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Po uproszczeniu Twierdzenie Schwedlera Przykład. Belka o długości l utwierdzona lewym końcem q M=0,5ql2 MA x RA x F=ql l y 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: q M=0,5ql2 MA x RA x F=ql l y 1. Reakcje więzów – płaski układ sił równoległych Po przekształceniu 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: 2. Równania momentów gnących oraz sił poprzecznych Spełnione jest twierdzenie Schwedlera, ponieważ: oraz 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: 3. Wykresy momentów gnących oraz sił poprzecznych Mg(x) + 0,5ql2 parabola ql2 T(x) -ql 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Przypadki szczególne 1. F0, M=0, q=0 Wówczas ql2 Mg(x) + T(x) -ql 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Przypadki szczególne 2. F=0, M0, q=0 Wówczas Mg(x) 0,5ql2 + 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Przypadki szczególne 3. F=0, M=0, q0 Wówczas 0,5ql2 Mg(x) Wykresy dla przypadków szczególnych można złożyć otrzymując wykres wynikowy, zgodnie z zasadą superpozycji T(x) ql + 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Założenia czystego zginania Hipoteza płaskich przekrojów – zaznaczone przekroje nie zmieniają się co do kształtu, każdy przekrój poprzeczny ciała odkształcalnego pozostaje w jednej płaszczyźnie Podczas czystego zginania występuje oś obojętna. Włókna leżące powyżej tej osi są rozciągane natomiast włókna leżące poniżej tej osi są ściskane. Oznacza to, że włókna belki zginanej pracują w jednoosiowym stanie naprężeń. Naprężenia w belce zginanej przyjmują rozkład liniowy. 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: W praktyce obliczeniowej najczęściej stosowanymi modelami konstrukcji zginanych są belki odkształcalne stąd nasze rozważania uprościmy do czystego zginania. A A’ B B’ – + z x oś obojętna Rozważmy stan naprężeń w belce zginanej przyjmując promień osi obojętnej , zaś odległość punktu przekroju mierzoną od osi obojętnej wzdłuż współrzędnej z. Można wykazać, że naprężenia spełniają zależność: 2019-01-15 11:52:25
Wytrzymałość belek – zginanie: Wynika stąd, że przyjmują one wartość maksymalną Związek pomiędzy momentem gnącym a naprężeniami w przekroju zginanym z F a y y1 x 2019-01-15 11:52:26
Wytrzymałość belek – zginanie: Jeżeli przekrój zginany obraca się wokół osi y1 to zgodnie z założeniem czystego zginania para sił musi działać w płaszczyźnie xz. Przy określaniu znaku momentu gnącego stosujemy następującą zasadę. Dla przekroju zginanego rozpatrujemy warunki równowagi statycznej. moment statyczny Warunkiem równowagi wewnętrznej jest moment statyczny równy 0. 2019-01-15 11:52:26
moment bezwładności przekroju względem osi y Wytrzymałość belek – zginanie: moment bezwładności przekroju względem osi y dla przekroju kołowego o średnicy d dla przekroju prostokątnego d z y z y b h 2019-01-15 11:52:26
Wytrzymałość belek – zginanie: Moment gnący: Naprężenia (normalne) przy zginaniu wskaźnik wytrzymałości na zginanie Dla przekroju kołowego Elementy zginane konstrukcji maszyn oblicza się z uwagi na spełnienie warunku wytrzymałości dla naprężeń dopuszczalnych na zginanie: 2019-01-15 11:52:26
Wzmocnienie platformy wagonu Wytrzymałość belek – zginanie: Przykład. Wagon kolejowy do przewozu kontenerów Wzmocnienie platformy wagonu q l Mg + 2019-01-15 11:52:26
Dziękuję za uwagę !!! 2019-01-15 11:52:26