Radialne Funkcje Bazowe i algorytmy aproksymacyjne

Slides:



Advertisements
Podobne prezentacje
o radialnych funkcjach bazowych
Advertisements

STATYSTYKA WYKŁAD 03 dr Marek Siłuszyk.
Inteligencja Obliczeniowa Metody oparte na podobieństwie do wzorców.
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Inteligencja Obliczeniowa Sieci RBF.
Inteligencja Obliczeniowa Otwieranie czarnej skrzynki.
Katedra Informatyki Stosowanej UMK
Inteligencja Obliczeniowa Ulepszenia MLP
Katedra Informatyki Stosowanej UMK
Uczenie konkurencyjne.
Samoorganizacja: uczenie bez nadzoru.
Inteligencja Obliczeniowa Sieci dynamiczne.
Inteligencja Obliczeniowa Metody probabilistyczne.
Inteligencja Obliczeniowa Systemy neurorozmyte.
Wykład 28 Włodzisław Duch Uniwersytet Mikołaja Kopernika
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Sieci o zmiennej strukturze.
Inteligencja Obliczeniowa Perceptrony
Inteligencja Obliczeniowa Feature Space Mapping.
o radialnych funkcjach bazowych
„Piramid Match Kernel”
Ulepszenia metody Eigenfaces
Rozpoznawanie Twarzy i Systemy Biometryczne, 2005/2006
Rozpoznawanie Twarzy i Systemy Biometryczne, 2005/2006
Inteligencja Obliczeniowa Klasteryzacja i uczenie bez nadzoru.
Linear Methods of Classification
Additive Models, Trees, and Related Methods
Klasyfikacja dokumentów za pomocą sieci radialnych
Licencjonowanie wirtualizacji
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Detekcja twarzy w obrazach cyfrowych
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
ANALIZA KINEMATYCZNA MANIPULATORÓW ROBOTÓW METODĄ MACIERZOWĄ
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
Windows 8.1 dostarcza spójną platformę do tworzenia aplikacji, które potrafią dostosować się do wielu urządzeń Zaprojektowane raz, działają.
Rights of the child. Kliknij, aby edytować format tekstu konspektu Drugi poziom konspektu  Trzeci poziom konspektu Czwarty poziom konspektu  Piąty poziom.
DEMO Jak założyć konto na Microsoft Virtual Academy?
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Fundamentals of Data Analysis Lecture 12 Approximation, interpolation and extrapolation.
Metody Analizy Danych Doświadczalnych Wykład 9 ”Estymacja parametryczna”
Radialne Funkcje Bazowe i algorytmy aproksymacyjne Sieci Neuronowe Wykład 15 Włodzisław Duch Uniwersytet Mikołaja Kopernika Google: W. Duch.
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Learnmatrix, Adaline, Madaline i modele liniowe
Systemy neuronowo – rozmyte
Samoorganizacja: uczenie bez nadzoru
Perceptrony o dużym marginesie błędu
A prototype of distributed modelling environment
Running Dictation Activity to Engage Students in Reading, Writing, Listening, and Speaking.
EMPOWEREMENT IN ICT SKILLS. I CREATED MY WEBSITE TO USE IT FOR TEACHING.
Katedra Informatyki Stosowanej UMK
Lesson 11 – Problem Solving & Applications of Functions
Wizualizacja SOM Skalowanie Wielowymiarowe
Włodzisław Duch Katedra Informatyki Stosowanej,
Katedra Informatyki Stosowanej UMK
Sieci o zmiennej strukturze
Perceptrony o dużym marginesie błędu
Systemy Ekspertowe i Sztuczna Inteligencja trudne pytania
Hiperpowierzchnia energii potencjalnej cząsteczki
Wykład 6 Neuropsychologia komputerowa
MNK – podejście algebraiczne
Inteligencja Obliczeniowa Perceptrony
Katedra Informatyki Stosowanej UMK
PROBABILISTIC DISTANCE MEASURES FOR PROTOTYPE-BASED RULES
Samoorganizacja: uczenie bez nadzoru
zl
1) What is Linux 2) Founder and mascot of linux 3) Why Torvalds created linux ? 4) System advantages and disadvantages 5) Linux distributions 6) Basic.
Programowanie sieciowe Laboratorium 4
Programowanie sieciowe Laboratorium 3
Inteligencja Obliczeniowa Sieci RBF.
Perceptrony wielowarstwowe, wsteczna propagacja błędów
Zapis prezentacji:

Radialne Funkcje Bazowe i algorytmy aproksymacyjne Sieci Neuronowe Wykład 15 Włodzisław Duch Uniwersytet Mikołaja Kopernika Google: W. Duch (c) 1999. Tralvex Yeap. All Rights Reserved

Co było Algorytmy konstruktywistyczne Przykłady zastosowań sieci MLP (c) 1999. Tralvex Yeap. All Rights Reserved

Sieci RBF i metody kernelowe Co będzie Teoria aproksymacji Funkcje radialne Sieci RBF i metody kernelowe (c) 1999. Tralvex Yeap. All Rights Reserved

Filozofia RBF MLP - dyskryminacja, LDA, aproksymacja stochastyczna. RBF = Radial Basis Functions (1988) - inne podejście. Uczenie jako problem aproksymacji, najlepszego dopasowania (rekonstrukcji) hiperpowierzchni do danych treningowych. Twierdzenie (Cover 1965): Jeśli przekształcić wzorce X={X(i)}, i=1.. p, nieliniową funkcją na wektory F(X(i))={h(X(i))k}, k = 1..M, M > p wzorce prawdopodobnie staną się liniowo separowalne: tj. istnieje płaszczyzna WT F(X(i)) 0 dla X(i)C1, WT F(X(i)) <0 dla X(i)C2 (c) 1999. Tralvex Yeap. All Rights Reserved

Separowalność wielomianowa Jeśli wziąć funkcje wielomianowe: to zamiast sep. liniowej mamy sep. wielomianową. Functional Link Networks (Pao), SVM i Kernel Methods: optymalizacja nieliniowego przekształcenia. (c) 1999. Tralvex Yeap. All Rights Reserved

Functional link networks Pao (1989) - sieci połączeń funkcjonalnych. Model tensorowy: do zmiennych wejściowych należy dodać ich iloczyny, to rozwiązuje nieliniowo sep. problemy. Separacja kwadratowa Problem: za dużo parametrów. Realizacja: sieć perceptronów z dodatkowymi wejściami lub sieć z jedną warstwą ukrytą realizująca nieliniowe mapowanie. (c) 1999. Tralvex Yeap. All Rights Reserved

Uczenie jako problem aproksymacji Dla N punktów znajdź funkcję spełniającą: Postać funkcji RBF: Funkcja błędu z członem regularyzacyjnym: (c) 1999. Tralvex Yeap. All Rights Reserved

Funkcja RBF Człon regularyzacjny: uwzględnia dodatkowe warunki, takie jak pożądana gładkość funkcji. Postać funkcji RBF: Funkcja błędu z członem regularyzacyjnym: (c) 1999. Tralvex Yeap. All Rights Reserved

Rozwiązanie RBF Dla wąskich f. Gaussowskich hij =dij, wagi Wi =Yi , Jeden węzeł sieci na jeden wektor treningowy, bez regularyzacji. Dla wąskich f. Gaussowskich hij =dij, wagi Wi =Yi , idealne rozwiązanie, ale zła generalizacja. H - macierz interpolacji. Radialne f. bazowe: H dodatnio określona (Light 1992). Większe dyspersje, mniej funkcji - lepsza generalizacja. (c) 1999. Tralvex Yeap. All Rights Reserved

Interpretacja geometryczna Jeśli prawdziwa aproksymowana funkcja f(x) leży w przestrzeni rozpiętej przez wektory bazowe (x) to możliwe jest rozwiązanie bez błędu, w przeciwnym razie aproksymowana jest projekcja ortogonalna (błąd jest ortogonalny do p-ni bazowej). (c) 1999. Tralvex Yeap. All Rights Reserved

Regularyzacja RBF Człon regularyzacjny uwzględnia dodatkowe warunki, takie jak pożądana gładkość funkcji. Jeśli człon regularyzacyjny jest niezmienniczy translacyjnie i rotacyjnie to funkcja aproksymująca musi mieć postać radialną. Dowód: teoria aproksymacji zaszumionych danych, teoria f. Greena, teoria estymacji z Gaussowskimi jądrami. (c) 1999. Tralvex Yeap. All Rights Reserved

Rozwiązanie z regularyzacją Regularyzacja w teorii aproksymacji źle uwarunkowanych problemów: Tikhonov 1963. Stabilizacja przez dodatkowe warunki, operator P. Minimalizacja funkcji błędu z członem regularyzacyjnym daje równanie Eulera-Lagrange’a dla funkcjonału kosztu E(F) Dla operatorów P w postaci różniczkowej: (c) 1999. Tralvex Yeap. All Rights Reserved

Wpływ regularyzacji Duża liczba f. bazowych o małej dyspersji bez regularyzacji i po regularyzacji (Ossowski 1996) (c) 1999. Tralvex Yeap. All Rights Reserved

Funkcje radialne Przykłady: lokalne i nie Radialna Inverse multiquadratic Multiquadratic Gauss Thin splines (cienkiej płytki) (c) 1999. Tralvex Yeap. All Rights Reserved

Funkcja Gaussa Jedyna lokalna i separowalna f. radialna (c) 1999. Tralvex Yeap. All Rights Reserved

Funkcja współrzędnej radialnej (c) 1999. Tralvex Yeap. All Rights Reserved

Funkcje wielokwadratowe (c) 1999. Tralvex Yeap. All Rights Reserved

Funkcje cienkiej płytki (c) 1999. Tralvex Yeap. All Rights Reserved

Sieci RBF Jedna warstwa ukryta, parametry nieliniowe funkcji transferu + wagi łączące z warstwą wyjściową. Sieci GRBF - mniejsza liczba węzłów niż danych. Sieci HRBF - pełna macierz obrotów i skalowania Q: Q różne dla różnych centrów (c) 1999. Tralvex Yeap. All Rights Reserved

Uczenie sieci RBF Parametry nieliniowe funkcji transferu: centra, dyspersje; + wagi. Inicjalizacja początkowych centrów: klasteryzacja lub samoorganizacja. Inicjalizacja dyspersji: średnie odległości od wektorów z innych klas. Uczenie - metody gradientowe, podobnie jak w BP. Metoda probabilistyczna: jeśli rozkład równomierny, p. przynależności X do klastra o centrum Di i zakładamy diagonalne dyspersje to: (c) 1999. Tralvex Yeap. All Rights Reserved

Inicjalizacja RBF 1 Algorytm inicjalizacji centrów przez klasteryzację:   Wybierz w przypadkowy sposób punkt początkowy, nie należący do otoczenia już ustalonych centrów. Utwórz zbiór wszystkich punktów z danej klasy leżących bliżej niż punkty z innej klasy. Przyjmij położenie centrum Di jako średnią dla punktów znalezionego zbioru Powtarzaj dwa ostatnie kroki aż do zbieżności Inne metody klasteryzacji: dendrogramy, łączenie histogramów. (c) 1999. Tralvex Yeap. All Rights Reserved

Inicjalizacja RBF 2 Algorytm inicjalizacji centrów przez samoorganizację: Wybierz w przypadkowy sposób punkt początkowy, nie należący do otoczenia już ustalonych centrów. Utwórz zbiór wszystkich punktów z danej klasy leżących bliżej niż punkty z innej klasy. Zmieniaj położenie centrum Di po prezentacji każdego wektora treningowego: Stała uczenia hk zanika w miarę wzrostu k, np. (T - stała l. epok) Przesuwanie centrów w jakimś promieniu - samoorganizacja. (c) 1999. Tralvex Yeap. All Rights Reserved

Uczenie - obroty i usuwanie. Pełna macierz transformacji Q: za dużo parametrów dla danych o dużej l. cech; diagonalna - ustawienia wzdłuż osi. Obroty f. zlokalizowanych - przydatne; wystarczy Qii0 i Qii+1 0, realizuje dowolne obroty. Inna metoda: iloczyn Gauss * (s(WX+b)-s(WX+b’)) Uproszczenie: kąt obrotu ustalony po inicjalizacji (c) 1999. Tralvex Yeap. All Rights Reserved

Konstruktywny RBF GAL (Growing and Learning), GrRBF (Growing Radial Basis Function), FEN (Function Estimation Networks), RAN (Resource Allocation Networks) Klasyfikatory Gaussowskie, sieci probabilistyczne ... Dwa kryteria wzrostu: duży błąd e + brak centrum w okolicy, które ma szanse po modyfikacji ten błąd zmniejszyć. (c) 1999. Tralvex Yeap. All Rights Reserved

RCE Reduced Coulomb Energy model (Bachman, Cooper .. 1987) Funkcje typu twardej sfery o zmiennym promieniu pokrywające całą przestrzeń. Początkowo ri jak największe, w czasie uczenia są zmniejszane do połowy odległości z centrum odmiennej klasy i dostawiane są nowe sfery. Niejednoznaczne obszary - kolor ciemnoczerwony. (c) 1999. Tralvex Yeap. All Rights Reserved

Porównanie MLP-RBF MLP RBF Nielokalne, wymagają douczania jeden rodzaj parametrów trudna inicjalizacja trudna interpretacja ustalone klasy uczenie tylko pod nadzorem zawsze wie BP dość skomplikowane dla wielu warstw RBF Lokalne efekty, stabilność kilka rodzajów parametrów łatwa inicjalizacja tworzą nowe klasy możliwe uczenie bez nadzoru czasami nie wie uczenie łatwe bo 1 warstwa (c) 1999. Tralvex Yeap. All Rights Reserved

Kernele! Kernel trick: if vectors are transformed using some function (usually non-linear) into high-dimensional space separation of data may be easier to achieve. Replace: This leads to the same problem formulation, except that X is replaced everywhere by F(X); in particular Lagrangian contains scalar products: These scalar products are calculated between vectors in some transformed space; instead of calculating them directly it is sufficient to define a kernel function K(X,Y). What kind of functions correspond to scalar products in Hilbert spaces? They should be symmetric; formal conditions have been found in mathematical analysis by Mercer; they may influence convergence. (c) 1999. Tralvex Yeap. All Rights Reserved

Kernel example Simplest: polynomial kernel: Example: quadratic kernel in 2-D Use of this kernel is equivalent to working in 5-D space: Hyperplane in 5D found using linear SVM corresponds to quadratic function in 2D; try to show that quadratic border in (X1,X2) space becomes a hyperplane in kernel space. Selection of kernel may strongly influence results. (c) 1999. Tralvex Yeap. All Rights Reserved

Other popular kernels Some popular kernels working as scalar products: Gaussian: Sigmoidal: Distance: Dimensionality of the F space: number of independent polynomial products or number of training vectors. Distance kernel: for b=2 Euclidean distance  linear case! In complex cases (ex. protein comparison) kernel = similarity function, especially designed for the problem. (c) 1999. Tralvex Yeap. All Rights Reserved

Kernelizacja Funkcja dyskryminująca może być w postaci: zamiast sumy Wij Xji Number of support vectors in a separable case is small, but in non-separable case may get large – all between the margins + errors. Kernels may be used in many discriminant methods, for example Kernel PCA or Kernel Fisher Discriminant Analysis. Covariance matrix after transformation: F(X) is d-dim vector, and F is d x n matrix (c) 1999. Tralvex Yeap. All Rights Reserved

Przykład 1: kombinacje Gaussów Gaussian kernels work quite well, giving close to optimal Bayesian error (that may be computed only because we know the distributions, but it is not exact, since finite number of points is given). 4-deg. polynomial kernel is very similar to a Gaussian kernel, C=1. (c) 1999. Tralvex Yeap. All Rights Reserved

Przykład 2: Cleveland heart data Left: 2D MDS features, linear SVM, C=1, acc. 81.9% Right: support vectors removed, margin is clear, all vector inside are SV. Gaussian kernel, C=10000, 10xCV, 100% train, 79.3± 7.8% test Gaussian kernel, C=1, 10xCV, 93.8% train, 82.6± 8.0% test Auto C=32 and Gaussian dispersion 0.004: about 84.4± 5.1% on test (c) 1999. Tralvex Yeap. All Rights Reserved

Example 3: Ljubliana cancer recurrence 286 events: 85 recurrence (29.7%) and 201 no recurrence (70.3%); 9 features: tumor-size, inv-nodes, deg-malig, etc ... Linear kernel, C=1 (C=10 similar, C=100 hard to converge): whole data 75 errors, or 73.8% 10xCV: training 73.71.0%, test 71.18.3% Linear kernel, C=0.01: 10xCV: training 70.60.7%, test 70.31.4% (base rate !) Polynomial kernel k=3, C=10 (opt): 10xCV: training 89.80.6%, test 74.27.9% (best for polynomial kernel) Gaussian kernel, opt C=1 and s=1/4 10xCV: training 88.03.4%, test 74.86.5% (best for Gaussian kernel) But a rule: Involved Nodes > 0 & Degree_malig = 3 has 77.1% accuracy! (c) 1999. Tralvex Yeap. All Rights Reserved

Some applications SVM found many applications, see the list at: http://www.clopinet.com/isabelle/Projects/SVM/applist.html A few interesting applications, with highly competitive results: On-line Handwriting Recognition, zip codes 3D object recognition Stock forecasting Intrusion Detection Systems (IDSs) Image classification Detecting Steganography in digital images Medical applications: diagnostics, survival rates ... Technical: Combustion Engine Knock Detection Elementary Particle Identification in High Energy Physics Bioinformatics: protein properties, genomics, microarrays Information retrieval, text categorization (c) 1999. Tralvex Yeap. All Rights Reserved

Co dalej? Sieci Hopfielda Sieci Hebbowskie i modele mózgu Samoorganizacja (c) 1999. Tralvex Yeap. All Rights Reserved

Koniec wykładu 15 (c) 1999. Tralvex Yeap. All Rights Reserved