Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl mogą być wykorzystywane przez jego Użytkowników wyłącznie w zakresie własnego użytku osobistego oraz do użytku w szkołach podczas zajęć dydaktycznych. Kopiowanie, wprowadzanie zmian, przesyłanie, publiczne odtwarzanie i wszelkie wykorzystywanie tych treści do celów komercyjnych jest niedozwolone. Plik można dowolnie modernizować na potrzeby własne oraz do wykorzystania w szkołach podczas zajęć dydaktycznych.
TWIERDZENIE COSINUSÓW
i cosinusa kąta zawartego między nimi. W dowolnym trójkącie kwadrat dowolnego boku równa się sumie kwadratów dwóch pozostałych boków pomniejszonej o podwojony iloczyn tych boków i cosinusa kąta zawartego między nimi. C γ b a α A β c B Oznaczenia trójkąta w rozwiązywanych zadaniach są takie same: naprzeciw wierzchołka A jest bok długości a; naprzeciw wierzchołka B bok długości b; naprzeciw wierzchołka C jest bok długości c.
Przykład 1. Oblicz długość nieznanego boku w trójkącie ABC jeżeli: a) lub - odpada Długość nieznanego boku równa się
b) lub - odpada Długość nieznanego boku równa się
c) lub - odpada Długość nieznanego boku równa się
Wyznacz miary kątów trójkąta, wiedząc, że: a=10cm, b=8cm, c=6cm. Przykład 2. Wyznacz miary kątów trójkąta, wiedząc, że: a=10cm, b=8cm, c=6cm. Obliczamy miarę kąta zawartego między bokami b i c.
Odp: Miary kątów wewnętrznych w trójkącie wynoszą: 90°, 53°, 37°. Obliczamy miarę kąta zawartego między bokami a i c. Suma miar kątów wewnętrznych w trójkącie wynosi 180°. Obliczamy miarę trzeciego kąta w trójkącie. Odp: Miary kątów wewnętrznych w trójkącie wynoszą: 90°, 53°, 37°.
Przykład 3. Wierzchołki trójkąta ABC mają współrzędne: A=(-2,3) B=(1,0) C=(6,3). Wyznacz długości boków i miary kątów wewnętrznych w trójkącie ABC. A Obliczamy długości boków trójkąta ABC, wykorzystując wzór na długość odcinka. b C c a B
Wykorzystując twierdzenie cosinusów wyznaczamy miary kątów wewnętrznych w trójkącie.
Odp: Miary kątów wewnętrznych w trójkącie ABC wynoszą: 45°, 104°, 31°. Suma miar kątów wewnętrznych w trójkącie wynosi 180°. Obliczamy miarę trzeciego kąta w trójkącie. Odp: Miary kątów wewnętrznych w trójkącie ABC wynoszą: 45°, 104°, 31°.
Znajdź kąt między prostymi k i l o równaniach: k: y=x l: y=-x+4 Przykład 4. Znajdź kąt między prostymi k i l o równaniach: k: y=x l: y=-x+4 Wyznaczamy współrzędne punktu wspólnego obydwu prostych. Tworzymy układ równań:
Wybieram dowolne dwa punkty – jeden należący do jednej prostej, drugi należący do drugiej prostej. Łącząc te punkty otrzymujemy trójkąt ABC, w którym kąt wewnętrzny α jest jednocześnie kątem między prostymi k i l. Obliczam długości boków trójkąta ABC.
Odp: Kąt między prostymi ma miarę 90˚. Wykorzystując twierdzenie cosinusów wyznaczamy miarę kąta przy wierzchołku A. Odp: Kąt między prostymi ma miarę 90˚.