Mechanika kwantowa dla niefizyków

Slides:



Advertisements
Podobne prezentacje
Opracowali: Patryk Klemczak Tomasz Klemczak ODSIECZ WIEDEŃSKA.
Advertisements

Kształtowanie się granic II Rzeczypospolitej
Wykład 4: Systemy nawigacji satelitarnej
WNIOSEK O PRZYZNANIE POMOCY
POGŁĘBIONA OCENA SYTUACJI FINANSOWEJ NA PODSTAWIE ANALIZY WSKAŹNIKOWEJ
Machine learning Lecture 3
Identyfikacja dansylowanych aminokwasów metodą cienkowarstwowej chromatografii na płytkach poliamidowych Gawahir Hassan.
Program Rozwoju Obszarów Wiejskich
Przyszłe zmiany sposobu finansowania zadań oświatowych
Wybrane bloki i magistrale komputerów osobistych (PC)
HELIOTECHNIKA W chwili obecnej jest niekonkurencyjna w porównaniu ze źródłami konwencjonalnymi, ale jest to „czysta energia” dlatego wiąże się z nią wiele.
Tolerancje i pasowania
B R Y Ł Y P L A T O Ń S K I E.
Bankowość Pieniądz Podstawowe informacje o bankach
Weryfikacja hipotez statystycznych
Krakowskie Sympozjum Naukowo-Techniczne
Zasilacze prądu stałego Czyli rzeczywiste źródła napięcia
Prof. nadzw. dr hab. inż. Jarosław Bartoszewicz
Mechanika kwantowa dla niefizyków
Grzegorz Karasiewicz Katedra Marketingu Wydział Zarządzania UW
1 czerwca w zerówce.
„ Mały Miś i polskie tradycje Bożego Narodzenia”
Box Behnken Design w optymalizacji procesu biosyntezy β-karotenu w hodowlach drożdży Rhodotorula rubra Ludmiła Bogacz-Radomska(1), Joanna Harasym(1,2,3),
Projekt z dnia 30 maja 2017 r. Ustawa z dnia …. ……………
Prof. dr hab. Roman Sobiecki Rachunki makroekonomiczne
CAPS LOCK - CERTYFIKOWANE SZKOLENIA JĘZYKOWE I KOMPUTEROWE
Prezentacje wykonali: Marcin Łukasik Wiktor Kołek
GOSPODAROWANIE ZASOBAMI W ORGANIZACJI
Co to jest SSC Master… SSC Master to platforma elektronicznego obiegu, dekretacji i akceptacji dokumentów w organizacji. Dzięki szerokiemu i elastycznemu.
Podstawy pomagania SPPiIK, 2016 Anna Gromińska.
Chemia biopierwiastków
Sedymentacja.
Współczesne kierunki polityki społecznej
Hiszpania,Portugalia,Litwa,Polska,Turcja,Włochy,Chorwacja Desery.
Prawo pracy – ćwiczenia (IX)
Dotarcie do specyficznej grupy docelowej
Sprawozdanie roczne z realizacji Planu działania Krajowej Sieci Obszarów Wiejskich na lata za rok 2016 Warszawa, 26 czerwca 2017 r. Materiał.
Srebrna Małopolska regionalne inicjatywy na rzecz seniorów
Stan Wojenny.
O UTWORZENIE ZWIĄZKU METROPOLITALNEGO W WOJEWÓDZTWIE ŚLĄSKIM
Wojewódzki Inspektorat Ochrony Środowiska w Białymstoku
ZAWODOZNAWSTWO Materiały zrealizowane w ramach projektu
Wykład 8: Złożone problemy przetwarzania mobilnego
Realizacja sprzężenia od siły w układzie sterowania robotem do zastosowań neurochirurgicznych Dorota Marszalik Wieliczka,
Funkcje generujące w kombinatoryce
Ruch turystyczny w Krakowie w 2015 roku
© dr hab. Inż. Paweł Jabłoński
Adsorpcja faza stała/ gazowa lub ciekła faza ciekła/ gazowa lub ciekła
MODELE EPIDEMIOLOGICZNE
Dowody matematyczne - zadania podstawowe
Zagadnienie prawdy Andrzej Łukasik Zakład Ontologii i Teorii Poznania
Ewolucja gwiazd.
Potencjał chemiczny Potencjał chemiczny ma charakter siły uogólnionej,
STAŁE RÓWNOWAGI REAKCJI PROTOLITYCZNYCH
Optymalizacja sieci drogowej propozycja algorytmu
Nie ma innego – Tylko Jezus Mariusz Śmiałek
W ramach stypendium Ministerstwa Kultury i Dziedzictwa Narodowego
R- Punkt referencyjny (wyjściowy) obrabiarki
Parki krajobrazowe na Podlasiu
Publicznej Szkole Podstawowej nr 4 im. Tadeusza Kościuszki
Materiały pochodzą z Platformy Edukacyjnej Portalu
Zasady poprawnej komunikacji – jak uniknąć konfliktów ?
Gimnazjum nr 3 im. J. Chełmońskiego w Zielonej Górze
Moje dziecko i jego potrzeby.
Edukacja psychologiczna
GMINA RUDZINIEC.
Czym jest mowa nienawiści?
Wykład 7 Prawo urzędnicze.
Wsparcie dla przedsiębiorców oferowane przez Powiatowy Urząd Pracy
Zapis prezentacji:

Mechanika kwantowa dla niefizyków Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) Mechanika kwantowa dla niefizyków 28 września 2016 1

Wykładowcy Jacek Matulewski (optyka kwantowa) in order of appearance Jacek Matulewski (optyka kwantowa) Karolina Słowik (optyka kwantowa) Jarosław Zaremba (optyka kwantowa) Jacek Jurkowski (fizyka matematyczna)

Plan wykładu Dlaczego fizyka kwantowa jest ważna? Doświadczenie Younga Funkcja falowa Mechanika kwantowa: doświadczenia interferencyjne Teoria pomiaru Kwantowy model atomu Laser BEC Teleportacja, splątanie kwantowe, EPR Fuzja jądrowa inicjowana laserem Cząstki elementarne: model standardowy LHC Wielka unifikacja

Plan na dziś Dlaczego fizyka kwantowa jest ważna? Doświadczenie Younga Funkcja falowa Mechanika kwantowa: doświadczenia interferencyjne Teoria pomiaru Kwantowy model atomu Laser BEC Teleportacja, splątanie kwantowe, EPR Fuzja jądrowa inicjowana laserem Cząstki elementarne: model standardowy LHC Wielka unifikacja

Czemu fizyka kwantowa jest ważna? Energia jądrowa: rozszczepianie ciężkich jąder atomów (lub fuzja lekkich)

Czemu fizyka kwantowa jest ważna? Broń jądrowa

Czemu fizyka kwantowa jest ważna? Zrozumienie chemii

Czemu fizyka kwantowa jest ważna? Pasmowa teoria półprzewodnictwa →elektronika, SSD

Czemu fizyka kwantowa jest ważna? Zegary atomowe → GPS

Czemu fizyka kwantowa jest ważna? Aparatura medyczna: RTG, MRI, CT

Czemu fizyka kwantowa jest ważna? Lasery w medycynie (okulistyka, dermatologia)

Czemu fizyka kwantowa jest ważna? Lasery w kasach sklepowych

Czemu fizyka kwantowa jest ważna? Lasery w telekomunikacji (światłowody)

Czemu fizyka kwantowa jest ważna? Kryptografia kwantowa i komputery kwantowe

Plan wykładu Dlaczego fizyka kwantowa jest ważna? Doświadczenie Younga Funkcja falowa Mechanika kwantowa: doświadczenia interferencyjne Teoria pomiaru Kwantowy model atomu Laser BEC Teleportacja, splątanie kwantowe, EPR Fuzja jądrowa inicjowana laserem Cząstki elementarne: model standardowy LHC Wielka unifikacja

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton Interferencja (wzmocnienie zależy od położenia)

Interferencja dwóch fal kulistych Wikipedia

Interferencja Wynik złożenia Fale składowe Fale zgodne w fazie Fale w przeciwfazie Wikipedia

Interferencja dwóch fal płaskich Wikipedia

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton Dlaczego pojawia się smuga? http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton Interferencja (wzmocnienie zależy od położenia) Każda szczelina – źródło fal wtórnych (zasada Huygensa) http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

??? Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton ??? http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton Interferencja!!! (wzmocnienie zależy od położenia) http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton To nic nie zmienia! Tak samo dla elektronów http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Obraz interferencyjny dla pojedynczych fotonów dualizm korpuskularno-falowy Pierwszy eksperyment: G.I. Taylor (1909) Rysunek: http://blog.anton-paar.com/wave-and-particle-light-is-both/

Akiro Tonomura (1986) – eksperyment dla pojedynczych elektronów Doświadczenie Younga Obraz interferencyjny dla pojedynczych elektronów dualizm korpuskularno-falowy Akiro Tonomura (1986) – eksperyment dla pojedynczych elektronów

Doświadczenie Younga λ= ℎ 𝑚𝑣 Dualizm korpuskularno falowy: uderzenie w ekran – cząstka (plamka) przejście przez szczeliny – fala (dyfrakcja, interferencja) Fale de Broglie’a – opis materii jak fali o długości: λ= ℎ 𝑚𝑣 stała Plancka prędkość masa

Doświadczenie Younga Dualizm korpuskularno falowy: uderzenie w ekran – cząstka (plamka) przejście przez szczeliny – fala (dyfrakcja, interferencja) Fale de Broglie’a – opis materii jak fali długość fali → dyspersja → refrakcja (załamanie) im większa długość, tym mniej czasu wymaga ujawnienie „falowej” natury obiektu

??? Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton ??? http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

!!! Doświadczenie Younga Co spodziewamy się ujrzeć na ekranie? Jedna szczelina – materia (śrut, sól) Dwie szczeliny – materia (śrut, sól) Jedna szczelina – powierzchnia wody Dwie szczeliny – powierzchnia wody Jedna szczelina – światło (fotony) Dwie szczeliny – światło (fotony) Jedna szczelina – elektrony (materia) Dwie szczeliny – elektrony (materia) Dwie szczeliny – pojedyncze fotony Dodanie obserwatora, który sprawdza przez którą szczelinę przeszedł foton !!! http://genesismission.4t.com/Physics/Quantum_Mechanics/double_slit_experiment.html

Doświadczenie Younga Co oznacza pomiar stanu fotonu lub elektronu: pomiar wymaga oddziaływania układu kwantowego z układem makroskopowym (przyrząd pomiarowy) → zmiana stanu obserwowanego układu Nie możemy „biernie patrzeć” na foton lub elektron Pomiar stanu przy przejściu przez szczelinę → widoczna różnica w momencie uderzenia w ekran Zmiana stanu innego typu → redukcja (już nie jest w dwóch miejscach jednocześnie)

Doświadczenie Younga http://www.youtube.com/watch?v=pUGY57RFz0Y (fragment filmu, którego w całości nie należy oglądać!)

Interferometr Macha-Zehndera kontrola długości drogi optycznej Detektory lustro lustro płytka światłodzieląca Inny sposób realizacji doświadczenia z dwoma szczelinami

Interferometr Macha-Zehndera Bez drugiej płytki: fotony = cząsteczki (~ dwa prążki) Gdy obecna: fotony = fala (wygaszanie lub wzmocnienie)

Interferometr Macha-Zehndera liczba fotonów Grangier, Roger, Aspect (1986) Gdy obecna: fotony = fala (wygaszanie lub wzmocnienie)

Doświadczenie Wheelera O obecności drugiej płytki decydujemy już po przejściu fotonu przez pierwszą Opóźnione wstawienie lustra nie zmienia obu wyników. Foton nie „decyduje” o swej naturze na pierwszej płytce

Gumka kwantowa (2006) licznik koincydencji cząstka fala polaryzator (fotony stają się rozróżnialne) filtry (wymazują informację o polaryzacji Konwerter częstości (produkuje z jednego dwa splątane fotony o mniejszej częstości/energii; różne, ale nieznane polaryzacje)

Gumka kwantowa (2006) licznik koincydencji fala polaryzator (fotony stają się rozróżnialne) filtry (wymazują informację o polaryzacji Wymazanie informacji o ścieżce już po „spotkaniu” fotonów powoduje przywrócenie wzoru interferencyjnego → obie śc.

Wnioski Światło ujawnia dwie natury: falową i „cząstkową” dualizm korpuskularno-falowy Materia (elektrony, nawet jądra atomowe) też… koncepcja fal de Broglie’a Obiekt (światło lub materia) może być w kilku miejscach jednocześnie i interferować z samym sobą Opis mikroświata wymaga osobnej teorii i słownika → mechanika kwantowa Splątanie kwantowe, EPR → Karolina Słowik

W domu Sprawdzić przy wyjściu z Instytutu wartość stałej Plancka (ℏ= ℎ 2𝜋 ) Obliczyć długość fali de Broglie’a dla elektronu poruszającego się z prędkością 1 m/s i 100 000 km/s oraz dla ziarna soli (1/3 mg ≈ 0,0003 g ≈ 0,0000003 kg) Lektura: dwa artykuły Pawła Paczkowskiego (UW): Doświadczenia interferencyjne z fotonami część I: Foton 94 (jesień 2006) część II: Foton 95 (zima 2006) Na stronie czasopisma dostępne są pliki PDF. Wykład Feymana o doświadczeniu Younga (YouTube)