Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl.

Podobne prezentacje


Prezentacja na temat: "Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl."— Zapis prezentacji:

1 Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu mogą być wykorzystywane przez jego Użytkowników wyłącznie w zakresie własnego użytku osobistego oraz do użytku w szkołach podczas zajęć dydaktycznych. Kopiowanie, wprowadzanie zmian, przesyłanie, publiczne odtwarzanie i wszelkie wykorzystywanie tych treści do celów komercyjnych jest niedozwolone. Plik można dowolnie modernizować na potrzeby własne oraz do wykorzystania w szkołach podczas zajęć dydaktycznych.

2 ZBIORY

3 Często mówimy: zbiór książek, zbiór znaczków, zbiór liczb, zbiór roślin, uczniów,… Elementami wymienionych zbiorów są np.: książki, znaczki, liczby,… Zbiory oznaczamy wielkimi literkami alfabetu: A, B, C, …, X, Y, Z, a ich elementy małymi literami: a, b, c, ….. x, y, z. Zapis matematyczny: a є A czytamy: element a należy do zbioru A zapis k є A czytamy: element k nie należy do zbioru A a k c d e c є A a є A d є A e є A A

4 Zbiór jest pojęciem pierwotnym w matematyce, to znaczy jest takim pojęciem, które przyjmujemy bez definicji. Zbiór to inaczej ogół elementów, które łączy wspólna cecha, przynależność do grupy. przykłady zbiorów: A – zbiór owoców B - zbiór liczb C – zbiór zwierząt    ¼ 1 ¾ A B C

5 RODZAJE ZBIORÓW skończony – mający skończoną liczbę elementów; np.: A - zbiór naturalnych dzielników liczby 6 A = {1,2,3,6} B – zbiór liczb całkowitych ujemnych większych od -7 B = {-6,-5,-4,-3,-2,-1} nieskończony – zbiór, do którego należy nieskończenie wiele elementów; np.: N – zbiór liczb naturalnych C – zbiór liczb całkowitych R – zbiór liczb rzeczywistych pusty – zbiór do którego nie należy żaden element; zbiór taki oznaczamy Ф

6 SPOSOBY PRZEDSTAWIENIA ZBIORÓW a) opis słowny np.: zbiór K jest zbiorem naturalnych dzielników liczby 20 b) wypisanie elementów należących do zbioru K = {1,2,4,5,10,20} c) podanie warunku, który muszą spełniać elementy zbioru K = { x: x є N ٨ x │ 20 } Zapamiętaj! ٨ to matematyczny znak „i” który łączy dwa warunki x │ 20 czytamy: x dzieli 20 albo x jest dzielnikiem liczby 20

7 ZAWIERANIE SIĘ ZBIORÓW Zbiór A jest podzbiorem zbioru B, gdy każdy element zbioru A jest elementem zbioru B. B A - zbiór A jest zawarty w zbiorze B ( A jest podzbiorem B) - zbiór C nie jest podzbiorem zbioru B przykład: C C B A K

8 RÓWNOŚĆ ZBIORÓW Dwa zbiory A i B są równe gdy mają te same elementy (gdy zbiór A jest podzbiorem zbioru B i jednocześnie zbiór B jest podzbiorem zbioru A). Matematycznie równość zbiorów przedstawia zapis: Zapamiętaj! czytamy: wtedy i tylko wtedy czytamy: zawiera się

9 Przykłady zbiorów równych: a) b) Wypisując elementy zbioru A otrzymasz elementy zbioru B.

10 W gimnazjum była mowa o liczbach. Najmniejszym zbiorem liczbowym jest zbiór liczb naturalnych N. Zbiór liczb naturalnych jest podzbiorem zbioru liczb całkowitych C. Zbiór C jest podzbiorem zbioru liczb wymiernych W. Zbiór liczb wymiernych podzbiorem zbioru liczb rzeczywistych R. N C W R


Pobierz ppt "Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl."

Podobne prezentacje


Reklamy Google